SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion

Graphical Abstract

Highlights

- SIRT4 is a deacylase enzyme that targets lysine protein modifications for removal
- Catabolism of the branched-chain amino acid leucine is controlled by SIRT4
- Dysregulated leucine metabolism in SIRT4KO mice leads to elevated insulin secretion
- SIRT4KO mice develop accelerated age-induced insulin resistance

Authors

Kristin A. Anderson, Frank K. Huynh, Kelsey Fisher-Wellman, ..., Deborah M. Muoio, Paul A. Grimsrud, Matthew D. Hirschey

Correspondence

matthew.hirschey@duke.edu

In Brief

Anderson and Huynh et al. show that SIRT4 is a protein deacylase targeting lysine modifications derived from reactive acyl species produced from leucine catabolism. Mice lacking SIRT4 have dysregulated leucine metabolism leading to chronically elevated insulin secretion and accelerated age-induced insulin resistance.
SIRT4 Is a Lysine Deacylase that Controls Leucine Metabolism and Insulin Secretion

Kristin A. Anderson,1,2,8 Frank K. Huynh,1,8 Kelsey Fisher-Wellman,1 J. Darren Stuart,1 Brett S. Peterson,1 Jonathan D. Douros,1 Gregory R. Wagner,1 J. Will Thompson,2,8 Andreas S. Madsen,4 Michelle F. Green,1 R. Michael Sivley,9 Olga R. Ilkayeva,1 Robert D. Stevens,1 Donald S. Backos,9 John A. Capra,5 Christian A. Olsen,4 Jonathan E. Campbell,1,2,7 Deborah M. Muoio,1,2,7 Paul A. Grimsrud,1 and Matthew D. Hirschey1,2,7,9,*

1Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center, Duke University Medical Center, Durham, NC 27701, USA
2Department of Pharmacology and Cancer Biology
3Duke Proteomics and Metabolomics Shared Resource
Duke University Medical Center, Durham, NC 27710, USA
4Center for Biopharmaceuticals and Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
5Department of Biological Sciences, Department of Biomedical Informatics, Vanderbilt Genetics Institute, Center for Structural Biology, Vanderbilt University, Nashville, TN 37235, USA
6Computational Chemistry and Biology Core Facility, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
7Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC 27710, USA
8Co-first author
9Lead Contact
*Correspondence: matthew.hirschey@duke.edu
http://dx.doi.org/10.1016/j.cmet.2017.03.003

SUMMARY

Sirtuins are NAD⁺-dependent protein deacylases that regulate several aspects of metabolism and aging. In contrast to the other mammalian sirtuins, the primary enzymatic activity of mitochondrial sirtuin 4 (SIRT4) and its overall role in metabolic control have remained enigmatic. Using a combination of phylogenetics, structural biology, and enzymology, we show that SIRT4 removes three acyl moieties from lysine residues: methylglutaryl (MG)-, hydroxymethylglutaryl (HMG)-, and 3-methylglutaryl (MGc)-lysine. The metabolites leading to these post-translational modifications are intermediates in leucine oxidation, and we show a primary role for SIRT4 in controlling this pathway in mice. Furthermore, we find that dysregulated leucine metabolism in SIRT4KO mice leads to elevated basal and stimulated insulin secretion, which progressively develops into glucose intolerance and insulin resistance. These findings identify a robust enzymatic activity for SIRT4, uncover a mechanism controlling branched-chain amino acid flux, and position SIRT4 as a crucial player maintaining insulin secretion and glucose homeostasis during aging.

INTRODUCTION

The sirtuin proteins (mammalian SIRT1–7) are a class of NAD⁺-dependent protein deacylases that remove post-translational acyl modifications from various cellular substrates to regulate a wide range of biological pathways (Anderson et al., 2014). Importantly, activation or overexpression of sirtuins increases healthspan and lifespan in several model organisms (Hall et al., 2013). Conversely, ablation or inhibition of sirtuins accelerates the onset of several aging phenotypes (Houtkooper et al., 2012).

Originally thought to be strictly lysine deacetylases (Imai et al., 2000; Verdin et al., 2004) or ADP-ribosyltransferase (Tanny et al., 1999), more recent studies have shown that the sirtuins remove several post-translational modifications (PTMs) from lysine residues (Anderson et al., 2014). SIRT1–3 are strong lysine deacetylases, with the additional ability to hydrolyze longer chain acyl modifications (Feldman et al., 2013; Madsen et al., 2016). SIRT5 is a lysine demalonylase (Peng et al., 2011), desuccinylase (Du et al., 2011), and deglutarylase (Tan et al., 2014). SIRT6 is a highly specific lysine deacetylase (Michishita et al., 2008; Mostoslavsky et al., 2006), as well as a long-chain deacetylase (Jiang et al., 2013). Because sirtuins with unique enzymatic activities each occupy a distinct phylogenetic subclass, the phylogeny has been suggested to provide key information about sirtuin enzymatic activity (Hirschey, 2011).

In contrast to SIRT1–3, 5, and 6, the primary enzymatic activity of SIRT4 has previously remained unclear. SIRT4 resides in the mitochondria and was originally thought to be an ADP-ribosyltransferase (Ahuja et al., 2007; Haigis et al., 2006); however, this activity has been called into question as its primary enzymatic function (Du et al., 2009). SIRT4 has also been described as a lysine deacetylase (Laurent et al., 2013b), but recombinant SIRT4 does not catalyze deacetylation on a variety of substrates (Feldman et al., 2013; Verdin et al., 2004). Furthermore, SIRT4 showed no deacylation activity against known dicarboxyl-acyl modifications (Peng et al., 2011; Tan et al., 2014) and does not efficiently remove long-chain acyl modifications (Feldman...
et al., 2013; Madsen et al., 2016). A recent report described SIRT4 as a lipoamidase (Mathias et al., 2014), but robust lipoamidase activity was not seen using well-established sirtuin deacetylation assays (Feldman et al., 2013). Thus, a strong, consistent enzymatic activity for SIRT4 has not yet been identified.

Despite this gap in knowledge, SIRT4 has been shown to influence important biological pathways. SIRT4 ablation in mice activates glutamate dehydrogenase, leading to increased glutamine metabolism (Csibi et al., 2013; Jeong et al., 2013, 2014). Several human cancers, including those with the worst prognoses (e.g., lung, gastric, and colorectal cancer) are associated with decreased expression of SIRT4 (Jeong et al., 2013; Miyo et al., 2015). SIRT4 also regulates pathways important in metabolic diseases such as diabetes and obesity. Both glucose and amino acid-stimulated insulin secretion are increased in the absence of SIRT4 (Ahuja et al., 2007; Haigis et al., 2006). Additionally, several studies have shown that SIRT4 can reduce fatty acid oxidation and/or increase lipid synthesis via various mechanisms (Ho et al., 2013; Laurent et al., 2013a, 2013b; Nasrin et al., 2010). Therefore, SIRT4 has important regulatory roles in several disease pathways; however, the mechanisms linking SIRT4 enzymatic activity to regulating these pathways are not yet known.

The emerging idea that sirtuins have several enzymatic activities, coupled with the notion that previous reports identified relatively weak activities for SIRT4 compared to the other mammalian sirtuins, suggested to us that SIRT4 might have an undiscovered, robust enzymatic activity. As a result, we set out to determine if SIRT4 was a lysine deacylase targeting a novel PTM, with the overall goal of understanding the role of SIRT4 in metabolism and the diseases of aging.

RESULTS

Phylogenetic and Structural Analyses of SIRT4

To gain insight into possible SIRT4 activities, we first analyzed the sequence and structural features of the enzyme. We found that SIRT4 has the requisite amino acids known to participate in deacylase reactions (Figures 1A and S1A). In particular, SIRT4 contains a homologous sirtuin deacylase domain, a conserved catalytic histidine (H161), and a Rossmann fold (Min et al., 2001) NAD⁺-binding motif (amino acids 62–82, 143–146, 260–262, and 286–288) (Figure 1A). Next, we modeled the secondary structure of SIRT4 (Rost and Liu, 2003) and found that it contains predicted α helices (Figure 1B; above the x axis) and predicted β sheets (Figure 1B; below the x axis) in nearly identical locations to the other mitochondrial sirtuins SIRT3 and SIRT5. Together, these data show that the primary sequence and predicted secondary structure of SIRT4 are highly similar to the other mitochondrial sirtuins and contain the requisite features of a sirtuin deacylase enzyme to catalyze a deacylation reaction.

Next, we sought to identify regions within SIRT4 that could be important for its enzymatic activity. Phylogenetic analysis can reveal patterns of evolutionary pressure on specific amino acids that could be important for the function of the protein. For example, the mitochondrial sirtuin SIRT5 contains an evolutionarily conserved arginine (R) and tyrosine (Y) on an α helix in the catalytic pocket, which confers its specificity to deacylating negatively charged dicarboxyl-acyl moieties (Du et al., 2011). We performed a phylogenetic analysis of 5,869 sirtuin domains from proteins across 3,562 species (Figure S1B). Previous phylogenetic studies of sirtuins from approximately 30 (Frye, 2000) and 70 (Greiss and Gartner, 2009) sequenced species divided the human sirtuins into four classes: SIRT1–3 occupy class I, SIRT4 occupies class II, SIRT5 occupies class III, and SIRT6 and SIRT7 occupy class IV. Our updated analysis supports this grouping (Figures 1C and S1C) and provides a detailed evolutionary context in which to explore the patterns of conservation and difference among class II sirtuins, which show highest sequence similarity to human SIRT4.

We identified a region in human SIRT4 that showed high similarity to other species within the SIRT4 class (Figure 1D) but was not found in any other classes (Figure 1E). To quantify the uniqueness of this region, we applied the GroupSim algorithm for identifying specificity-determining positions (SDPs) to discover alignment positions with conserved amino acid preferences within and differences between the four classes of human sirtuins (Capra and Singh, 2008). We found that position 103 (the Q in the RQRYWAR) received the highest SDP score and position 104 (the second R in the RQRYWAR) received the sixth highest score (Figures 1D and S1D). This analysis suggested that the conserved region was under strong evolutionary pressure between the four classes of sirtuins and supported the idea that this region could be important for SIRT4 enzymatic activity.

Interestingly, a proline residue, which is often the start of an α helix, is positioned two residues upstream of this unique amino acid sequence in human SIRT4. Indeed, α-helical wheel prediction algorithms showed this region was highly likely to be helical (Figure 1F). In a protein sequence alignment, this helix was in a similar position to the α helix within the catalytic pocket of SIRT5 that conferred its enzymatic specificity toward dicarboxylic acid-modified lysines (Figure 1B, cyan, and Figure 1F), including malonyl-, succinyl-, and glutaryl-lysines. Together, these data suggest that this region is an α helix within the catalytic pocket of SIRT4 and could confer specificity for a novel acyl-lysine substrate.

To determine the location of this α helix within SIRT4, we built a homology model of the structure of SIRT4 based on its high level of sequence similarity to the other sirtuins. We found SIRT5 to contain the highest level of protein sequence conservation (~30% identical and ~50% conserved; Figure S2). Given that SIRT5 has several solved crystal structures (Du et al., 2011; Schuetz et al., 2007), we used a structure with the substrate bound (Du et al., 2011) as a template to build a homology model of SIRT4 (Figure 1A). This model showed the highly conserved α helix at the back of the SIRT4 catalytic pocket (Figures 2A and 2B). These data are consistent with our phylogenetic analyses and suggest that this region of SIRT4, like SIRT5, could target an acyl-lysine modification.

To further explore the possibility that this putative α helix within SIRT4 could coordinate a novel modification, we performed molecular dynamic simulations on a library of modified lysines based on known PTMs (Table S1). Also included in the library are modified lysines predicted to occur based on the physiological existence of the corresponding reactive acyl-CoAs or predicted reactive metabolites (Wagner et al., 2017). We then compared the relative abilities of SIRT3, SIRT4, or SIRT5 to favorably bind (negative interaction energies) to these modified
lysines by plotting their Z scores (Figure 2C; Table S1). Importantly, SIRT3 and SIRT5 showed favorable binding energies to modifications they are known to target. While the acetyl modification is not long enough to reach the α-helix in SIRT3’s binding pocket (Madsen et al., 2016), medium- and long-chain uncharged acyl modifications showed favorable binding energies (Figure 2C). Similarly, the model showed that negatively charged acyl modifications (e.g., malonyl, succinyl, and glutaryl modifications) favorably bound within the catalytic pocket of SIRT5 (Figure 2C). These data support the use of this prediction tool to identify and prioritize possible substrates for testing.

When performing this analysis on our SIRT4 model, we found 3-hydroxy-3-methylglutaryl (HMG)-lysine was the most favorable substrate bound (Figure 2C). Other structurally similar
modifications, including 3-methylglutaryl (MG)-lysine, and other negatively charged dicarboxyacyl-lysine modifications, including succinyl-, glutaryl-, and adipoyl-lysine, also showed favorable binding in the model of SIRT4 (Figure 2C). In contrast, we found no favorable binding of lipoyl-lysine to our SIRT4 model, suggesting low binding affinities of this previously reported modification (Figure 2C; Table S1). Collectively, these analyses support the idea that an evolutionarily conserved α-helical region in the catalytic pocket of SIRT4 could confer specificity to a negatively charged lysine modification.

SIRT4 Is a Lysine Deacylase

Based on these predictions, we began testing for SIRT4 enzymatic activities with a particular emphasis on negatively charged modifications (Figure 3A), which might interact with the positively charged α helix in the catalytic pocket of SIRT4. First, we turned to a well-established sirtuin deacylation assay that monitors the consumption of [32P]-NAD+ (Zhu et al., 2013), based on the rationale that all sirtuins require NAD+ as a co-substrate during catalytic deacylation, and that the readout of this assay would be agnostic to the nature of the lysine acyl modification. We focused initially on MG-lysine, a novel putative substrate identified in our modeling studies (Figure 3A). We generated MG-modified BSA using 3-methylglutaric anhydride and confirmed its modification by gel electrophoresis (Figure S3A). Using this substrate, we tested recombinant GST-tagged human SIRT4 obtained from a commercial source but did not observe any enzymatic activity (Figure S3B).

Newly synthesized proteins targeted to the mitochondria often have a targeting signal (MTS) consisting of 10–70 amino acids at the N terminus, which is often cleaved inside mitochondria. The mitochondrial sirtuins SIRT3 and SIRT5 each have an MTS (Nakagawa et al., 2009; Schwer et al., 2006), which needs to be cleaved for full activity (Figure 1A, black). Thus, we considered that either an improperly removed MTS or the recombinant protein tag could be interfering with the catalytic activity of the enzyme. Therefore, we amplified Sirt4 cDNA by PCR from mouse liver, sub-cloned it into a mammalian expression vector, and
overexpressed FLAG-tagged mouse SIRT4 (SIRT4) in mammalian cells. We then sequenced the overexpressed SIRT4 protein by mass spectrometry and identified a putative mitochondrial target signal at residues 1–23 (Figures 1A, 1B, and S3C), which is in agreement with a previously published report (Haigs et al., 2006). Next, we cloned a truncated version of SIRT4 that encodes the processed, mature protein for expression in bacteria with an N-terminal GST tag that is cleavable (Figure S3D). Remarkably, we found SIRT4 with the GST tag was not active, but SIRT4 without the GST tag showed robust activity against MG-BSA (Figure 3B). To validate this enzymatic activity, we generated catalytically inactive SIRT4 by mutating the catalytic histidine residue to tyrosine (SIRT4HY), expressed it in the same bacterial system, and detected no activity either with the uncleaved or cleaved forms of the protein (Figure 3B). Importantly, while demethylglutarylase activity was detected by cleaved SIRT4, deacetylase and delipoylase activities were below detection limits of our assay, indicating selectivity of SIRT4 for MG-lysine (Figure 3B). Together, these data show that SIRT4 catalyzes the NAD⁺-dependent de-methylglutaryltylation of lysine residues.

Next, we tested the specificity of SIRT4 activity. We generated a series of protein substrates using acyl anhydrides and acyl-CoAs to chemically modify BSA, validated each by gel electrophoresis and/or mass spectrometry (Figure S3A; Table S1), and subjected these to the 32P-NAD⁺-consumption assay. We first explored the chemical space surrounding MG-lysine by testing structurally similar modifications that showed favorable binding by molecular modeling (Figures 2C and 3A). We tested glutaryl-lysine and observed strong enzymatic activity against this substrate (Figure 3C). Then, we tested HMG-lysine and also found deacylase activity (Figure 3C). We further tested a wide range of modified proteins or peptides using the 32P-NAD⁺-consumption assay and found the two modifications most efficiently removed by SIRT4 were glutaryl- and MG-lysine, followed by HMG-lysine (Figure 3C; Table S1), which is consistent with our in silico predictions of preference for negatively charged five carbon backbone acyl modifications.

To determine whether the other mitochondrial sirtuins could remove these modifications, we tested SIRT3 and SIRT5 in this same assay (Figure 3D). We found that SIRT3 efficiently removed acetyl modifications from BSA, but not any negatively charged modifications (Figure 3D), as reported previously (Feldman et al., 2013; Madsen et al., 2016; Madsen and Olsen, 2012). We found that SIRT5 efficiently targeted succinyl-lysine and glutaryl-lysine (Figure 3D), as previously reported (Du et al., 2011; Tan et al., 2014). However, we found low or non-detectable activity against MG- and HMG-lysine, suggesting that SIRT4 specifically targets these modifications (Figure 3D).

Several acyl-CoA species are reactive metabolites that are the carbon source for protein modifications (Wagner et al., 2017; Wagner and Payne, 2013), but 3-methylglutaryl-CoA (MG-CoA) is not a metabolite known to be generated directly from any enzymes in humans (Wishart et al., 2013). Interestingly, the structurally similar 3-methylglutaconyl-CoA (MGc-CoA; Figure 3A) is an intermediary metabolite in leucine catabolism (Wishart et al., 2013) and MG-CoA is thought to originate from the chemical or enzymatic reduction of MGc-CoA (Roe et al., 1986). Because the difference between MG-CoA and MGc-CoA is one double bond, we considered the possibility that proteins could become 3-methylglutaconylated and that SIRT4 might target this modification for removal.

To test this hypothesis, and to further validate the enzymatic activities described above (Figure 3C), we turned to another sirtuin assay based on deacylation of a fluorogenic amino-methyl-coumarin (AMC) peptide substrate (Marcotte et al., 2004). We synthesized several substrates (Table S1) and tested their ability to be deacylated by SIRT4 (Figure 3E) or the remaining mammalian sirtuins SIRT1–7 (Figure S3B). In accordance with the NAD⁺-consumption assay, we found SIRT4 preferentially removed glutaryl- and MG-lysine modifications, followed by HMG- and MGc-lysine. Furthermore, we found that SIRT4 was inhibited by nicotinamide (Figure 3F), similar to the other sirtuin enzymes. Finally, because our phylogenetic and structural analyses predicted an important role for tyrosine 105 and arginine 108 in the catalytic pocket of SIRT4 to coordinate negatively charged substrates (Figures 1 and 2), we generated SIRT4 with these residues mutated to abrogate their charge and tested the enzymatic activity (Y105F and R108Q; SIRT4FQ mutant). After cleaving the recombinant protein tag (Figure S3E), we found the SIRT4FQ mutant had lower activity than wild-type SIRT4 (Figure 3G), supporting the idea that this region was under evolutionary pressure due to its importance for enzymatic activity. Interestingly, elevating the substrate concentration from 50 to 500 μM in this assay reduced the difference between SIRT4 and SIRT4FQ activity (data not shown), suggesting that the SIRT4FQ has a lower substrate binding affinity and that the α-helical region coordinates enzyme substrates. Therefore,
Figure 4. SIRT4 Ablation Leads to Disrupted MCCC Complex Formation

(A) Schematic representation of enzymes in leucine catabolism.

(B) MCCA from wild-type and SIRT4KO liver was immunoprecipitated and immunoblotted using antibodies against MG-lysine and MCCA. Shown is quantification of the MG-lysine signal normalized for total MCCA where n = 7/7 wild-type/SIRT4KO.

(legend continued on next page)
using two validated, well-established sirtuin activity assays, we identified several novel enzymatic activities for SIRT4.

Since neither chemically modified BSA nor pseudo-peptides are physiological substrates for SIRT4, we tested the ability of SIRT4 to remove these modifications in cells. To do so, we first generated antibodies against the modifications most potently targeted by SIRT4, namely glutaryl-lysine, HMGL-lysine, and MG-lysine, and validated their ability to recognize acyl-lysine-modified proteins (Figure S3F). Using these novel antibodies, we measured protein acylation in HEK293 cells stably overexpressing SIRT4. Compared to control cells, we found that cells overexpressing SIRT4 have an overall decrease in the level of all three of the novel acyl-lysine modifications (Figure 3H), consistent with the in vitro findings. Collectively, our data show that SIRT4 can remove negatively charged five-carbon backbone modifications from a wide range of protein substrates.

SIRT4 Controls Leucine Metabolism

Next, in order to identify the proteins and pathways that SIRT4 could be targeting, we used a proteomics approach to identify SIRT4 binding partners. Using a bait-prey co-immunoprecipitation strategy, we identified interacting partners with mouse and human SIRT3, SIRT4, and SIRT5 (Table S2). We prioritized proteins based on percent coverage and then identified the interactions that were unique to SIRT4 compared to the other mitochondrial sirtuins. Importantly, we found SIRT4 interacted with several previously described binding partners (Mathias et al., 2014). We next tested for pathway enrichment of putative interacting partners using Ingenuity Pathway Analysis, and found “valine, leucine, & isoleucine metabolism” as one of the top pathways containing SIRT4 binding proteins (Figure S4).

Remarkably, the acyl-CoA species that lead to modifications that SIRT4 targets are intermediates formed in leucine catabolism, supporting the hypothesis that SIRT4 could control leucine metabolism by deacylating proteins in this pathway (Wagner et al., 2017).

Inspection of the proteins driving this enrichment revealed methylcrotonyl-CoA carboxylase A and B (MCCA and MCCB, a.k.a. MCCC1 and MCCC2) as interacting proteins (Table S2), which form a heterododecamer enzyme complex in the leucine oxidation pathway (Figure 4A). The methylcrotonyl-CoA carboxylase complex (MCCC) was previously shown to interact with SIRT4 and was thought to be a putative substrate of SIRT4 (Wirth et al., 2013). Importantly, the MCCC enzyme generates MG-CoA, which can be chemically or enzymatically reduced to MG-CoA (Roe et al., 1986). Both of these activated carbon species can non-enzymatically modify proteins (Wagner et al., 2017) and are targets of SIRT4-mediated deacylation (Figure 3E). Thus, we tested the hypothesis that MCCC was acylated and was a substrate for SIRT4.

First, we measured the acylation status of MCCC in wild-type and SIRT4KO (knockout) mice. Using the methylglutaryl-lysine antibody, we found MCCC was hyperacylated in liver isolated from SIRT4KO mice (Figure 4B), as would be predicted in the absence of a protein deacylase. MCCC hyperacylation in SIRT4KO liver tissue was associated with a corresponding decrease in MCCC activity (Figure 4C). To determine if SIRT4 can remove acyl-lysines on MCCC, we first immunoprecipitated MCCA from SIRT4KO mice. Next, we incubated acylated MCCC with recombinant wild-type or catalytically inactive SIRT4 protein and found a lower acylation signal (Figure 4D), supporting the notion that SIRT4 removes acyl-lysine modifications from MCCC.

Because the chemical modifications that SIRT4 can remove have highly similar structures (Figure 3A) and our antibodies have moderate cross-reactivity (Figure S3F), we performed mass spectrometry proteomic analyses to determine where and which modifications were present on MCCC. We immunoprecipitated, digested, and measured MCCC peptides with mass shifts indicating glutarylated (114.03169 Da), methylglutarylated (128.047344 Da), 3-methylglutaconylated (126.031694 Da), 3-methylglutaconylated (144.042259 Da), succinylated (100.016044), or acetylated (42.010565 Da) lysines. MCCA exhibited 86% sequence coverage from the set of peptides identified at 1% false discovery rate (FDR). Remarkably, we found several glutaryl-, MG-, MGc-, and HMGL-lysines on MCCA peptides (Figures 4E and 4F; Table S3), as well as previously identified acetyl- and succinyl-lysine sites (Hornbeck et al., 2017).
Together, these data show that MCCC contains several of these new protein modifications.

To identify how these acyl modifications contribute to decreased MCCC activity in SIRT4KO mice, we first inspected more closely the sites of acylation. MCCC is an α3β6-α3 heterododecamer. The α subunit contains three domains: a biotin carboxylase (BC) domain, a domain that mediates interactions between the α and β subunits (BT domain), and a biotin carboxyl carrier protein (BCCP) domain (Figures 4F and 4G). The BC domain catalyzes the ATP-dependent carboxylation of biotin, which is located in the BCCP domain, and the β subunit catalyzes the transfer of the carboxyl group from biotin to the methylocrotonyl-CoA acceptor in the carboxyltransferase (CT) domain. Our proteomic analysis of MCCC identified acetylation sites dispersed throughout the α subunit (Figure 4E), consistent with previous findings (Hornbeck et al., 2012). In contrast, glutaryl-, MG-, HMG-, and MGc-lysines showed a distinct clustering in the BCCP domain. The β subunit had nearly the same sequence coverage as the α subunit at 85%, but significantly fewer modifications were detected on the β subunit (Figures 4F; Table S3).

Next, we modeled the sites of acylation onto the structure of MCCA. A high-resolution crystal structure and electron microscopy density mapping has been reported for the Pseudomonas aeruginosa MCCC (Huang et al., 2011). This bacterial enzyme is homologous to murine MCCC, with sequence identities of 47% and 66% for the α and β subunits, respectively (Sievers et al., 2011). We used these structures to build a homology model of the murine MCCC complex (Figure 4G) and then mapped the sites of acylation onto the lysines we identified by proteomics (Figure 4E). Surprisingly, we found that the biotinylated active site lysine (K677) was modified with glutaryl, MG, HMG, and MGcmodifications (Figure 4E). Biotinylation induces a conformational flip of K677 (Figure 4H), and these data suggested that MCCC might have reduced biotinyl-lysine in the absence of SIRT4. To test this hypothesis, we measured biotin levels on MCCC immunoprecipitated from wild-type and SIRT4KO mouse liver samples (Figure 4K), suggesting that lysine acylation does not influence lysine biotinylation.

Notably, we found several additional sites of acylation on MCCC, which were positioned at intramolecular interfaces. Therefore, we predicted protein acylation could affect intramolecular complex formation. The functionally active form of MCCC is an α3β6-α3 heterododecamer, which is thought to have a relatively unstable trimer of alpha subunits (Huang et al., 2011). One novel site of acylation (K66) lies directly at an α-α subunit interface (Figure 4I). The majority of remaining sites lie within the BCCP domain, which must translocate approximately 80 Å during MCCC catalysis to carry the carboxyl moiety from the BC domain to the CT domain (Huang et al., 2011). To carry out this function, the BCCP domain of the α subunit must be inserted into the active site of a neighboring β subunit (Figures 4G and 4J). Notably, K655 and K683 are at the interaction interface between the α-β subunits, and K655 is predicted to form a salt bridge with E44 on the β subunit (Figure 4J). Thus, we predicted a cluster of acylation in this region would alter binding of the α subunit to the β subunit, collectively reducing stability of the complex.

To test this directly, we monitored the migration of MCCC by blue native polyacrylamide gel electrophoresis (BN-PAGE) in wild-type and SIRT4KO mouse hepatic mitochondria. In wild-type mice, we observed a strong signal at 720 kDa (Figure 4L), which is the predicted molecular weight of the functionally intact dodecameric MCC complex (Huang et al., 2011). However, in SIRT4KO mice, significantly less 720 kDa MCCC signal is present (Figure 4M), despite similar total protein levels (Figure 4M) and similar levels of total MCCA (Figure 4N). These data demonstrate that in the absence of SIRT4, hyperacylation impairs the formation or overall stability of the MCC complex. Together, these findings support the model that SIRT4 regulates MCCC activity by influencing the amount of intact complex.

Next, we sought to determine the physiological consequence of MCCC protein hyperacylation and disrupted complex formation. MCCC is a protein in the leucine catabolic pathway; therefore, we tested whether leucine metabolism might be altered in the absence of SIRT4. To determine if SIRT4 ablation impacts leucine metabolism, we measured flux through the BCAA pathway in situ in intact, permeabilized liver mitochondria. We monitored the generation of NADH from α-ketoglutarate (αKIC), the deaminated α-ketoacid of leucine) in alanmethionin-permeabilized mitochondria isolated from livers of wild-type and SIRT4KO mice. Remarkably, we observed a significantly reduced rate of NADH production with αKIC as a substrate in SIRT4KO mouse mitochondria compared to wild-type controls (Figure 5A). To determine if the defect observed in SIRT4KO liver mitochondria was specific for BCAA metabolism, we next tested for changes in nutrient flux through several other mitochondrial metabolic pathways, namely α-ketoglutarate dehydrogenase (αKGDH) using α-ketoglutarate (αKG), glutamate dehydrogenase (GDH) using glutamate, and pyruvate dehydrogenase (PDH) using pyruvate (Figures 5B and S5A). Interestingly, we observed a small but significant reduction in the rate of NADH generated through αKGDH (Figure 5B). Glutamate flux through GDH was elevated in SIRT4KO mouse mitochondria (Figure 5B), consistent with previous reports (Haigis et al., 2006). However, we observed no differences in pyruvate metabolism (Figure 5B), which is in contrast to a recent report (Mathias et al., 2014). The widely variable rates of NADH generation from pyruvate could be influenced by the fact that flux through hepatic PDH was the lowest of the complexes tested (Figure S5A).

Since three different α-ketoacid substrates corresponding to the three BCAAs can drive BCKDH catabolic flux, we monitored NADH formation using the other two known substrates of BCKDH, α-ketoisovalerate (αKIV) and α-ketomethylvalerate (αKMV), in intact, permeabilized hepatic mitochondria. Consistent with our findings using αKIC as a substrate, NADH generation from αKIV and αKMV was lower in SIRT4KO mouse mitochondria compared to wild-type (Figure 5C). Importantly, the reduction in BCAA flux could not be attributed to any changes in the amount of total BCKDH or phosphorylation status of its known regulatory phosphorylation sites (Figure 5D). These data suggest that leucine metabolism, as well as isoleucine and valine metabolism, is altered in the absence of SIRT4. Taken together, these data clearly show that BCAA metabolism is specifically reduced by SIRT4 ablation.

Next, we measured whether the reduction in BCAA flux in the absence of SIRT4 was specific to the liver or could be
generalized to other tissues. Given the well-established role of skeletal muscle in BCAA disposal (Felig, 1975), we first collected mitochondria from wild-type mouse skeletal muscle and monitored NADH generation as described above; however, we were unable to detect NADH production in the presence of a \(\alpha \)-KIC in isolated mitochondria prepared from skeletal muscle of wild-type and SIRT4KO mice (Figure S5B). This is consistent with abundant expression of the leucine transaminase (BCATm) but low expression of BCKDH in skeletal muscle, which is the opposite ratio of expression of these enzymes in liver (Hutson et al., 1992; Newgard, 2012; Shimomura et al., 2006; Zhou et al., 2010).

In contrast to that observed in skeletal muscle, isolated mitochondria prepared from hearts revealed robust a-KIC-supported NADH production in wild-type mice; therefore, we repeated the enzyme activity assays detailed above for hepatic mitochondria in cardiac mitochondria collected from wild-type and SIRT4KO mice. Consistent with liver data, we found that BCAA flux was reduced and glutamate flux was increased in the hearts of SIRT4KO mice (Figures 5E and 5F). Flux through PDH and a-KGDH was not different in cardiac mitochondria from wild-type and SIRT4KO mice (Figure 5F).

Finally, we considered the possibility that a downstream reduction in oxidative phosphorylation (OXPHOS) could be contributing to the alterations in substrate metabolism we observed. We performed high-resolution O\(\text{O}_2 \) consumption experiments in isolated mitochondria prepared from liver and hearts of wild-type and SIRT4KO mice to determine if mitochondrial respiratory defects were associated with SIRT4 ablation. Given that both liver and heart rely heavily on fatty acids for fuel, respiratory control within the beta-oxidation pathway was assessed first, followed by maximal respiratory flux in the presence of saturating levels of both NAD\(^+\) and FAD-linked substrates. Energization with the respiratory substrates octanoyl-carnitine/malate, followed by the addition of ADP, revealed no differences in either

Figure 5. SIRT4 Ablation Reduces Leucine and BCAA Metabolic Flux

(A) Representative trace of \(\alpha \)-ketoisocaproate (a-KIC) flux measured ex vivo in wild-type and SIRT4KO mouse liver mitochondria, monitored by NADH fluorescence (excitation, 340 nm; emission, 460 nm).

(B) Quantification of relative hepatic substrate flux using pyruvate (Pyr), a-KIC, \(\alpha \)-ketoglutarate (a-KG), or glutamate (Glu) as a substrate (n = 9/9 wild-type/SIRT4KO).

(C) Representative trace of BCAA flux using a-KIC, \(\alpha \)-ketoisovalerate (a-KIV), or \(\alpha \)-ketomethylvalerate (a-KMV) measured ex vivo in wild-type and SIRT4KO mouse liver mitochondria, monitored by NADH fluorescence (n = 2/2 wild-type/SIRT4KO; excitation, 340 nm; emission, 460 nm).

(D) Quantified levels and representative blot of phosphorylated BCKDHe1 relative to total levels measured in wild-type and SIRT4KO mouse liver (n = 3/3 wild-type/SIRT4KO).

(E) Representative trace of a-KIC flux measured ex vivo in wild-type and SIRT4KO mouse cardiac mitochondria, monitored by NADH fluorescence (excitation, 340 nm; emission, 460 nm).

(F) Quantification of relative cardiac substrate flux using Pyr, a-KIC, \(\alpha \)-ketoglutarate (a-KG), or Glu as a substrate (n = 8/8 wild-type/SIRT4KO).

(G and H) Oxygen consumption was assessed in isolated mitochondria prepared from liver (G) and hearts (H) of wild-type and SIRT4KO mice. Respiration was assessed in the presence of mitochondria alone (M), followed by octanoyl-carnitine/malate (Oct/M; 0.2/2 mM), ADP (D; 1 mM), glutamate (G; 10 mM), succinate (S; 10 mM), and cytochrome c (Cyt; 0.01 mM) (n = 4/4 wild-type/SIRT4KO).

(I) Respiratory control ratios (RCRs) were calculated from respiration in the presence of ADP divided by that with Oct/M (n = 4/4 wild-type/SIRT4KO). Boxplots depict the interquartile range with whiskers plotted to the minimum and maximum values. The horizontal line within the box is the median value and the “+” is the mean value. *p < 0.05, **p < 0.001, ***p < 0.0001 by two-tailed Student’s t test. See also Figure S5.
Figure 6. SIRT4KO Mice Have Increased Leucine-Stimulated Insulin Secretion

(A) Immunoblot and quantification of SIRT4 expression normalized to seven different mitochondrial markers: citrate synthase (CS); complex I (CI); complex II (CII); complex III subunit 5, ubiquinol-cytochrome c reductase, Rieske iron-sulfur polypeptide 1 (CIII, UQCRFS1); complex III subunit 2, ubiquinol-cytochrome c reductase core protein II (CIII, UQCRC2); complex IV (CIV); and complex V (CV).

(B) Pancreatic islets were isolated from 4- to 5-month-old male SIRT4KO mice and then subject to an islet perifusion; 75 islets each from n = 8/6 wild-type/SIRT4KO mice. Islets were washed with Krebs-Ringer buffer containing 2.7 mM glucose in between nutrient stimulations.

(C–E) Plasma insulin was measured in 2-month-old (C; n = 9/11 wild-type/SIRT4KO), 4-month-old (D; n = 6/4), and 8- to 10-month-old (E; n = 11/11) wild-type and SIRT4KO male mice following oral gavage of 1.5 mg/g glucose.

(legend continued on next page)
state 4 or state 3 O2 consumption (Figures 5G and 5H). Respiratory control ratios for both liver and heart were identical between wild-type and SIRT4KO mice (Figure 5I). Subsequent additions of NAD+-linked glutamate and FAD-linked succinate led to comparable increases in respiration (Figures 5G and 5H), together demonstrating that loss of SIRT4 within liver and heart does not compromise maximal respiratory flux regardless of the electron entry point (e.g., electron transfer flavoprotein [ETF], complex I, or complex II). Together, these data show that SIRT4KO mice have intact OXPHOS function but a specific reduction in BCAA flux in mitochondria isolated from multiple tissues.

SIRT4 Regulates Leucine-Stimulated Insulin Secretion

Previous studies have shown that altered BCAA metabolism is associated with the progression of diabetes and cardiovascular disease (Newgard et al., 2009; Shah et al., 2010). Further, proper control of leucine catabolism is important for overall healthy aging (Mansfeld et al., 2015). Thus, we set out to identify physiological consequences of dysregulated leucine catabolism in SIRT4KO mice. First, we assessed SIRT4 protein expression across a variety of tissues to understand in which tissue(s) SIRT4 might be controlling leucine metabolism. We collected heart, liver, skeletal muscle, whole pancreas, and pancreatic islets from wild-type mice (Figure 6A). Given that mitochondrial content is widely heterogeneous across these tissues, and SIRT4 is a mitochondrial protein, we measured seven different mitochondrial proteins in each tissue lysate and normalized SIRT4 protein to the average expression of these markers (Figure 6A), as well as to each mitochondrial protein individually (Figure S6A). Regardless of how SIRT4 protein is normalized, its expression was highest in liver, followed by isolated islets of Langerhans. SIRT4 protein expression was lower in heart, skeletal muscle, and whole pancreas, relative to mitochondrial content of each tissue (Figure 6A).

Since SIRT4 has been reported to have effects on insulin secretion, we focused on pancreatic islets (Ahuja et al., 2007; Haigis et al., 2006). Leucine has long been known as a potent insulin secretagogue in pancreatic islets (Sener and Malaisse, 1980). Considering the fact that our data show altered leucine metabolic flux in the absence of SIRT4, we hypothesized that SIRT4 might regulate leucine catabolism in the islet and therefore affect leucine-stimulated insulin secretion.

To test this hypothesis, we isolated pancreatic islets from wild-type and SIRT4KO mice and measured insulin secretion by islet perfusion (Figure 6B). We found that leucine-stimulated insulin secretion was potently increased in the isolated SIRT4KO islets compared to controls. Interestingly, glucose-stimulated insulin secretion was also increased in islets isolated from SIRT4KO mice compared to wild-type islets, while glutamine- and KCl-stimulated insulin secretion was similar between SIRT4KO islets and controls in our perfusion assay. Collectively, our data from isolated islets show that SIRT4 most robustly affects glucose- and leucine-stimulated insulin secretion, and that this is a direct effect on pancreatic islets.

To determine whether elevated insulin secretion also occurs in vivo, we challenged wild-type and SIRT4KO mice with glucose or leucine and measured insulin secretion over time. In contrast to our ex vivo data in isolated islets, we did not observe elevated glucose-stimulated insulin secretion in SIRT4KO mice in vivo until they were 8 months old (Figures 6C–6E). Interestingly, at 2 months of age, leucine-stimulated insulin secretion was similar in wild-type and SIRT4KO mice; however, while wild-type insulin levels rose and returned to baseline by 60 min, leucine-stimulated insulin levels in SIRT4KO mice tended to remain higher than baseline 60 min after the leucine gavage (Figure 6F). This trend for sustained leucine-stimulated insulin levels in SIRT4KO mice was more pronounced at 4 months of age (Figure 6G). Importantly, blood glucose levels were not affected by the leucine gavages (Figure S6B). By 8–10 months of age, SIRT4KO mice had overt hyperinsulinemia, even at baseline (Figure 6H). We also considered whether the increase in leucine-stimulated insulin secretion was caused by altered leucine uptake or clearance in SIRT4KO mice. To test this possibility, we gavaged mice with leucine and measured levels of leucine and aKIC in plasma over time (Figure S6C). The data clearly show that circulating leucine and aKIC levels are not changed between wild-type and SIRT4KO mice at any of the ages or time points we tested. Overall, the data demonstrate that SIRT4 affects both glucose- and leucine-stimulated insulin secretion in vivo, but the effects on leucine-stimulated insulin secretion precede those of glucose-stimulated insulin secretion.

Taken together, the ex vivo and in vivo data show that SIRT4 has a clear role in regulating insulin secretion in pancreatic islets. These effects are direct on pancreatic islets since leucine clearance in vivo is unchanged and elevated insulin secretion is observed in isolated SIRT4KO islets ex vivo. Importantly, the data show that the effects of SIRT4 on leucine-stimulated insulin secretion precede those on glucose-stimulated insulin secretion, suggesting that the primary defect in SIRT4KO mice centers on leucine. Collectively, our data support the model that lower leucine metabolism in SIRT4KO mice alters the fate of intracellular leucine in pancreatic islets, thereby increasing insulin secretion.

Elevated Insulin Secretion in SIRT4KO Mice Drives Insulin Resistance

Finally, we investigated the overall physiological consequences of chronic increases in insulin secretion by performing an extensive analysis of glucose metabolism in SIRT4KO mice at multiple ages. When we assessed glucose tolerance in young-, middle-, and old-aged mice, we found that young (2 months old) SIRT4KO mice had normal glucose tolerance (Figure 7A) but progressively developed glucose intolerance as they aged (Figures 7A–7C). Consistent with the development of age-related glucose intolerance in SIRT4KO mice, we also observed a progressive development of insulin resistance with age (Figures 7D–7F). At 2 months

(F–H) Plasma insulin was measured in 2-month-old (F; n = 4/7 wild-type/SIRT4KO), 4-month-old (G; n = 15/15), and 8- to 10-month-old (H; n = 11/11) wild-type and SIRT4KO male mice following an oral gavage of 0.3 mg/g leucine. p values less than 0.05 by two-way ANOVA are indicated. Asterisks indicate p < 0.05 between wild-type and SIRT4KO by Holm-Sidak post hoc test. See also Figure S6. Data are shown as average ± SEM.
of age, SIRT4KO mice had normal insulin sensitivity (Figure 7D); however, by 7 months of age, SIRT4KO mice developed insulin resistance (Figure 7E), which worsened by 11 months of age (Figure 7F).

As another marker of dysregulated glucose metabolism, we also measured fasting plasma insulin and blood glucose levels. After a mild 5–6 hr fast, SIRT4KO mice had elevated insulin levels at 2 months of age (Figure 7G). As SIRT4KO mice aged beyond 4 months of age, they developed overt fasting hyperinsulinemia (Figure 7G). Unlike plasma insulin levels, fasting blood glucose levels were normal at 2 months of age (Figure 7H). Yet as the mice aged, SIRT4KO mice developed elevated fasting hyperglycemia compared to the wild-type controls (Figure 7H).

Together, these data clearly show that in vivo fasting hyperinsulinemia is the earliest metabolic defect observed in SIRT4KO mice. Since chronic hyperinsulinemia can lead to the development of insulin resistance (Gray et al., 2010; Rajan et al., 2016), our data suggest that early hyperinsulinemia in SIRT4KO mice may be the primary defect driving accelerated age-induced insulin resistance. As a whole, our data support the notion that SIRT4 controls leucine metabolism and insulin secretion in islets and that loss of SIRT4 leads to dysregulated insulin secretion and accelerated age-induced glucose intolerance and insulin resistance.

DISCUSSION

Among the family of seven sirtuins, the primary enzymatic activity of the mitochondrial sirtuin SIRT4 has remained enigmatic. This gap in knowledge has made interpreting the role of SIRT4 in aging-related physiology difficult. Using a combination
of phylogenetics and computational biology, we identified a region within the catalytic pocket of SIRT4 protein that is highly conserved and, therefore, was likely under strong evolutionary selective pressure. By modeling the structure of the protein and performing enzymatic studies on SIRT4, we found that this region has an α helix that coordinates and facilitates the removal of glutaryl-, MG-, HMG-, and MGc-lysine modifications.

To identify how SIRT4 and its newly discovered enzymatic activities influence metabolism, we first investigated proteins that interact with SIRT4. We and others have found that SIRT4 binds to several enzymes of the leucine oxidation pathway (Mathias et al., 2014; Wirth et al., 2013). Interestingly, our concurrent study demonstrates that reactive acyl-CoA species (RAS) have the potential to react non-enzymatically with lysine residues to generate protein modifications (Wagner et al., 2017). Indeed, during leucine oxidation, three specific reactive species are generated: MGc-CoA and hydroxymethyl-CoA (HMG-CoA) are directly generated, whereas MG-CoA is generated from the chemical or enzymatic (non-specific) reduction of MGc-CoA (Roe et al., 1986). These metabolites react with lysine residues to produce acyl-lysine modifications that we identified as substrates of SIRT4-mediated deacylation. We hypothesize that RAS generated during leucine metabolism react with lysine residues on nearby proteins in the leucine metabolism pathway to inhibit their function, thus providing a negative feedback loop to reduce pathway flux. Upon activation, SIRT4 removes these modifications to restore leucine catabolism.

In support of this hypothesis, we found that in the absence of SIRT4, flux through the BCAA metabolic pathway was markedly reduced in mitochondria isolated from both liver and heart tissue. Importantly, reduced flux in the SIRT4KO mouse mitochondria was specific to the BCAA pathway, as no consistent changes between genotypes were seen in pyruvate or αKG metabolic flux. Interestingly, we found through flux through GDH was elevated, in agreement with previous reports (Haigis et al., 2006). This previous study reported GDH inhibition by ADP-ribosylation, presumed to be catalyzed by SIRT4. Importantly, GDH is allosterically activated by leucine and its deamidated homolog αKIC (Allen et al., 2004; Fahien and Macdonald, 2011). Thus, in light of the data presented here, we hypothesize that elevated GDH activity in the absence of SIRT4 can be explained by lower leucine/αKIC metabolism, leading to elevations in allosteric activators of GDH, and thus overall activity; future studies will be directed at testing this hypothesis. Overall, our data support the notion that in the absence of SIRT4, BCAA metabolism is inhibited.

We next sought to determine the overall physiological effect of ablated SIRT4 and disrupted leucine metabolism. To do this, we first determined in which tissues SIRT4 was highly expressed. Interestingly, pancreatic islets were among the highest SIRT4-expressing tissues when normalized to mitochondrial content. Leucine has long been known as a potent insulin secretagogue (Sener and Malaisse, 1980). Further, leucine and BCAA metabolism are emerging as important regulators of diabetes (Newgard, 2012), cardiovascular disease (Shah et al., 2010), and metabolic homeostasis throughout the aging process (D’Antona et al., 2010; Mansfeld et al., 2015; Martin et al., 2011). Reduced BCAA catabolism is reported in obese, diabetic ob/ob mice and mice rendered diabetic through a high-fat diet and low-dose streptozotocin treatment (Lian et al., 2015). As a result, we focused on characterizing glucose metabolism in SIRT4KO mice that have dysregulated leucine metabolism.

We found that pancreatic islets isolated from SIRT4KO mice had increased insulin secretion in response to leucine. Leucine is proposed to increase insulin secretion through several different mechanisms. For example, leucine allosterically activates GDH, thereby increasing αKg flux into the TCA cycle, increasing ATP production, and stimulating insulin secretion (Li et al., 2003). Leucine can also be oxidized to generate ATP, thereby stimulating insulin secretion; however, 2-amino-bicyclo[2.2.1]heptane-2-carboxylic acid (BCH), a non-metabolizable leucine analog, can still stimulate insulin secretion by activating GDH (Fahien and Macdonald, 2011). Further, leucine still stimulates insulin secretion in mice lacking mitochondrial branched-chain aminotransferase (BCAT2), which catalyzes the first step in leucine oxidation (Zhou et al., 2010). Consequently, the major mechanism by which leucine stimulates insulin secretion has converged on allosteric activation of GDH. Given that we find decreased leucine metabolism in SIRT4KO tissues, we hypothesize that less leucine metabolism leads to more leucine available to allosterically stimulate GDH, which increases insulin secretion in SIRT4KO islets.

Similar to patients with activating mutations of GDH, SIRT4KO mice also displayed inappropriately high basal levels of insulin and a particular sensitivity to hyperinsulinemia after ingestion of leucine. Interestingly, the earliest defect we observed in SIRT4KO mice was basal hyperinsulinemia. While this phenotype was mild, previous studies have shown that chronic hyperinsulinemia can lead to insulin resistance (Coleman and Hummel, 1974; Gray et al., 2010; Lee, 1981; Rajan et al., 2016). Indeed, as SIRT4KO mice aged, the hyperinsulinemia became progressively worse, which was consistent with the development of glucose intolerance, insulin resistance, and fasting hyperglycemia. Accordingly, the International Mouse Phenotyping Consortium reported that serum fructoseamine levels, a measure of long-term glucose control, are elevated in SIRT4KO mice, further supporting our observations that SIRT4KO mice have abnormal glucose homeostasis (Koscielny et al., 2014). Taken together, these data suggest that an impairment in the ability to break down leucine in SIRT4KO mice leads to enhanced leucine-stimulated insulin secretion. With age, this impairment accelerates the development of chronic hyperinsulinemia and eventually a disruption of glucose homeostasis.

Overall, the data presented here support a model in which SIRT4 regulates leucine metabolism by controlling the acylation status of enzymes in the pathway, which in turn modulates the ability of proteins to form intact, active complexes. We further propose that RAS generated during leucine oxidation can react with lysine residues on nearby proteins involved with leucine metabolism to produce acyl-lysine modifications and inhibit their function (Wagner et al., 2017). The ability of SIRT4 to remove these modifications shapes the fate of leucine by regulating its flux through the leucine catabolism pathway. An alternative,
but not mutually exclusive, model positions sirtuins to act as protein quality control enzymes by removing deleterious protein modifications (Wagner and Hirschey, 2014), thereby maintaining enzyme activity and metabolic flux. Indeed, our data show that SIRT4 plays an important role in maintaining quality of enzymes in the leucine metabolic pathway and ensuring complex formation. Therefore, future studies will be directed at determining if SIRT4 plays a primary role to control metabolism and metabolic flux, if SIRT4 instead responds to protein hyperacylation in the setting of RAS to ensure protein function, or both, depending on the enzyme substrate. Overall, our studies propose a new, integrated model of how protein acylation and deacylation control metabolism, influence enzyme function and fidelity, and open up several exciting avenues to better understand the link between sirtuins and the aging process.

STAR METHODS

Detailed methods are provided in the online version of this paper and include the following:

- **KEY RESOURCES TABLE**
- **CONTACT FOR REAGENT AND RESOURCE SHARING**
- **EXPERIMENTAL MODEL AND SUBJECT DETAILS**
 - SIRT4-Overexpressing and Empty-Vector Stable 293T Cell Lines
 - Animals
- **METHOD DETAILS**
 - Protein Alignment and Structural Predictions
 - Phylogenetic Analyses and Scoring
 - Structural Analyses
 - SIRT4 Cloning and Recombinant Protein Expression
 - Bacterial Cell Culture Conditions for Recombinant SIRT4 Protein
 - SIRT4 Purification with Tag Cleaved
 - SIRT4 Purification with Tag Uncleaved
 - Bacterial Cell Culture Conditions for Alternative Recombinant SIRT4 Protein
 - SIRT4-His-SUMO Purification
 - Peptide Substrate Syntheses
 - Chemical Acylation of Bovine Serum Albumin
 - 32P-Nicotinamide Adenine Dinucleotide Consumption Assay
 - Fluorogenic Sirtuin Deacylase Assay for Substrate Screening
 - SIRT4 Peptide Substrate Profiling
 - Comparison of Wild-type and FQ Mutant SIRT4 Activities
 - SIRT4-expressing and Empty Vector Stable Cell Lines
 - Antibodies and Western Blotting
 - Isolation of Crude Mitochondria
 - Methylcrotonyl-CoA Carboxylase Activity Assay
 - Methylcrotonyl-CoA Carboxylase Immunoprecipitation
 - Preparation of Methylcrotonyl-CoA Carboxylase for Proteomics Analysis
 - Methylcrotonyl-CoA Carboxylase Analysis by Mass Spectrometry
 - LC-MS/MS Data Processing
 - Methylcrotonyl-CoA Carboxylase Modeling
 - Native Protein-Complex Preparation
 - Blue Native Polyacrylamide Gel Electrophoresis
 - Detection of Biotinylated Methylcrotonyl-CoA Carboxylase subunit A
 - Mitochondrial Substrate Oxidation Assays
 - Islet Perfusion
 - Mouse Physiology
 - Plasma Leucine and α-Ketoisocaprate Measurements
- **QUANTIFICATION AND STATISTICAL ANALYSIS**
- **DATA AND SOFTWARE AVAILABILITY**

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures and three tables and can be found with this article online at http://dx.doi.org/10.1016/j.cmet.2017.03.003.

AUTHOR CONTRIBUTIONS

ACKNOWLEDGMENTS

We would like to thank Xiaoke (Betty) Hu and James D. Johnson at the University of British Columbia, Vancouver for early assistance and advice with islet perfusions; Feng Yan, Dennis Goldfarb, and Michael (Ben) Major at the University of North Carolina at Chapel Hill for the interactome studies; Rami Najar and Cell Signaling Technology for the glutaryl-lysine antibody; Zhihong Lin at Duke University for technical assistance with animal experiments; and the entire Hirschey lab for feedback. We would also like to acknowledge funding support from the American Heart Association grants 12SDG8840004 and 12IRG9010008 (M.D.H.), the Ellison Medical Foundation (M.D.H.), the NIH and NIA grant R01AG045351 (M.D.H.), and the Duke Pepper Older Americans Independence Center (OAIC) Program in Aging Research supported by the National Institute of Aging (P30AG028716-01). F.K.H. was supported by an American Diabetes Association/Canadian Diabetes Association Postdoctoral Fellowship (PF-3-13-4342-FH); K.F.W. is supported by a Ruth L. Kirschstein National Research Service Award F32 Postdoctoral Fellowship (1F32DK105665-01A1); J.D.D. and G.R.W. are supported by an NIH/NIDDK training grant to the Duke University Department of Endocrinology, Metabolism, and Nutrition (2T32-DK07012-36A1); B.S.P. is supported by R24DK085610; A.S.M. is supported by a Sapere Aude grant from the Danish Independent Research Council–Technology and Production Sciences (12-132328); and M.F.G. was supported by a postdoctoral fellowship on an NIH/NCATS Colorado CTSA Grant UL1TR0001082. D.M.M. is supported by an NIH/NIDDK grant (2R01DK089312). The funding sources had no role in the conduct or presentation of this research.

Received: January 13, 2016
Revised: September 26, 2016
Accepted: March 6, 2017
Published: April 4, 2017
REFERENCES

SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase. Mol. Cell 50, 686–698.

STAR METHODS

KEY RESOURCES TABLE

<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rabbit polyclonal anti-3-methylglutaryl-K</td>
<td>This paper; YenZym Antibodies LLC “regular rabbit antibody service”</td>
<td>N/A</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-hydroxymethylglutaryl-K</td>
<td>Wagner et al., 2017; YenZym Antibodies LLC “regular rabbit antibody service”</td>
<td>N/A</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-glutaryl-K</td>
<td>Cell Signaling Technology</td>
<td>14943MF</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-SIRT4</td>
<td>Sigma-Aldrich</td>
<td>HPA029691; RRID: AB_10600118</td>
</tr>
<tr>
<td>Mouse monoclonal UQCRFS1</td>
<td>Abcam</td>
<td>ab14746; RRID: AB_301445</td>
</tr>
<tr>
<td>Mouse monoclonal anti-MCCA (A-4)</td>
<td>Santa Cruz Biotechnology</td>
<td>sc271427; RRID: AB_10658968</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-pBCKDHe1α</td>
<td>Abcam</td>
<td>ab200577</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-BCKDHe1α</td>
<td>Santa Cruz Biotechnology</td>
<td>sc67200; RRID: AB_2290343</td>
</tr>
<tr>
<td>Rabbit polyclonal anti-citrate synthase</td>
<td>Origene</td>
<td>TA308265</td>
</tr>
<tr>
<td>Mouse monoclonal anti-total OXPHOS cocktail</td>
<td>Abcam Inc.</td>
<td>ab110413; RRID: AB_2629281</td>
</tr>
<tr>
<td>Bacterial and Virus Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BL21 (DE3) pLysS Competent Cells</td>
<td>Promega</td>
<td>L119B</td>
</tr>
<tr>
<td>Chemicals, Peptides, and Recombinant Proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BSA, fatty acid free</td>
<td>Sigma-Aldrich</td>
<td>A7030</td>
</tr>
<tr>
<td>Acetic anhydride</td>
<td>Sigma-Aldrich</td>
<td>91204</td>
</tr>
<tr>
<td>Succinic anhydride</td>
<td>Sigma-Aldrich</td>
<td>239690</td>
</tr>
<tr>
<td>Glutaric anhydride</td>
<td>Sigma-Aldrich</td>
<td>G3806</td>
</tr>
<tr>
<td>3-methylglutaric anhydride</td>
<td>Sigma-Aldrich</td>
<td>M47809</td>
</tr>
<tr>
<td>3-hydroxy-3-methylglutaric anhydride</td>
<td>Cayman Chemical</td>
<td>18632</td>
</tr>
<tr>
<td>Acetyl-BSA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Succinyl-BSA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Glutaryl-BSA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Methylglutaryl-BSA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Hydroxymethylglutaryl-BSA</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>NAD, [adenylate-32P]</td>
<td>Perkin Elmer</td>
<td>NEG023</td>
</tr>
<tr>
<td>Pierce Protein A/G Agarose</td>
<td>Thermo Fisher Scientific</td>
<td>20423</td>
</tr>
<tr>
<td>Streptavidin Alexa Fluor 680</td>
<td>Thermo Fisher Scientific</td>
<td>S32358</td>
</tr>
<tr>
<td>Methylcrotonyl coenzyme A lithium salt</td>
<td>Sigma-Aldrich</td>
<td>M3013</td>
</tr>
<tr>
<td>Hi14C]O3, sodium bicarbonate</td>
<td>Perkin Elmer</td>
<td>NEC086H</td>
</tr>
<tr>
<td>LB (Miller’s) Broth</td>
<td>growcells.com</td>
<td>MBPE-1020</td>
</tr>
<tr>
<td>Ampicillin sodium salt</td>
<td>Sigma-Aldrich</td>
<td>A9518</td>
</tr>
<tr>
<td>Isopropyl-B-D-thiogalactopyranoside (IPTG), dioxane-free</td>
<td>Thermo Fisher Scientific</td>
<td>BP1755-10</td>
</tr>
<tr>
<td>Dulbecco’s Phosphate Buffer Saline (PBS)</td>
<td>Sigma-Aldrich</td>
<td>D8537</td>
</tr>
<tr>
<td>Trizma base</td>
<td>Sigma-Aldrich</td>
<td>T1503</td>
</tr>
<tr>
<td>DL-Dithiothreitol (DTT)</td>
<td>Sigma-Aldrich</td>
<td>D5545</td>
</tr>
<tr>
<td>PreScission Protease</td>
<td>GE Healthcare</td>
<td>27-0843-01</td>
</tr>
<tr>
<td>CHAPSO (3-[(3-Cholamidopropyl)dimethylammonio]-2-hydroxy-1-propanesulfonate)</td>
<td>Sigma-Aldrich</td>
<td>C3649</td>
</tr>
<tr>
<td>Glutathione</td>
<td>Sigma-Aldrich</td>
<td>G-4251</td>
</tr>
<tr>
<td>Glutathione Sepharose 4 Fast Flow</td>
<td>GE Healthcare</td>
<td>17-5132-01</td>
</tr>
<tr>
<td>Kanamycin sulfate</td>
<td>Sigma-Aldrich</td>
<td>K4000</td>
</tr>
</tbody>
</table>

(Continued on next page)
<table>
<thead>
<tr>
<th>REAGENT or RESOURCE SOURCE IDENTIFIER</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bovine Serum Albumin (BSA), protein assay standard</td>
<td>Thermo Fisher Scientific</td>
<td>23209</td>
</tr>
<tr>
<td>B-PER Bacterial Protein Extraction Reagent</td>
<td>Thermo Fisher Scientific</td>
<td>90084</td>
</tr>
<tr>
<td>Imidazole</td>
<td>Sigma-Aldrich</td>
<td>792527</td>
</tr>
<tr>
<td>Pierce Universal Nuclease for Cell Lysis</td>
<td>Thermo Fisher Scientific</td>
<td>88701</td>
</tr>
<tr>
<td>Ni Sepharose 6 Fast Flow</td>
<td>GE Healthcare Life Sciences</td>
<td>17-5318-01</td>
</tr>
<tr>
<td>SUMO Protease</td>
<td>Invitrogen</td>
<td>12588-018</td>
</tr>
<tr>
<td>IGEPAL CA-630</td>
<td>Sigma-Aldrich</td>
<td>I-3021</td>
</tr>
<tr>
<td>SIRT4 Wild-type (produced with N-terminal GST tag)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>SIRT4 HY Mutant (produced with N-terminal GST tag)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>SIRT4 Wild-type (produced with N-terminal His-SUMO tag)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>SIRT4 FQ Mutant (produced with N-terminal His-SUMO tag)</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>SIRT1 (aa 193-741 with N-terminal GST-tag)</td>
<td>BPS Biosciences</td>
<td>50012</td>
</tr>
<tr>
<td>SIRT2 (aa 50-356 with C-terminal His-tag)</td>
<td>BPS Biosciences</td>
<td>50013</td>
</tr>
<tr>
<td>SIRT3 (aa 102-399 with N-terminal GST-tag)</td>
<td>BPS Biosciences</td>
<td>50014</td>
</tr>
<tr>
<td>SIRT4 (aa 25-314 with N-terminal GST-tag)</td>
<td>BPS Biosciences</td>
<td>50015</td>
</tr>
<tr>
<td>SIRT5 (aa 37-310 with His-tag)</td>
<td>Enzo Life Sciences</td>
<td>SE555</td>
</tr>
<tr>
<td>SIRT6 (full length with N-terminal GST-tag)</td>
<td>BPS Biosciences</td>
<td>50017</td>
</tr>
<tr>
<td>SIRT7 (full length with C-terminal FLAG-tag)</td>
<td>BPS Biosciences</td>
<td>50018</td>
</tr>
<tr>
<td>AMC (7-amino-4-methyl-coumarin)</td>
<td>Chem-Impex International</td>
<td>02029</td>
</tr>
<tr>
<td>Trypsin from bovine pancreas, TPCK treated</td>
<td>Sigma-Aldrich</td>
<td>T1426</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>Sigma-Aldrich</td>
<td>72340</td>
</tr>
<tr>
<td>Nicotinamide</td>
<td>Sigma-Aldrich</td>
<td>N3376</td>
</tr>
<tr>
<td>Beta-NAD⁺ (nicotinamide adenine dinucleotide hydrate)</td>
<td>Sigma-Aldrich</td>
<td>N7004</td>
</tr>
<tr>
<td>Beta-NAD⁺ (nicotinamide adenine dinucleotide hydrate)</td>
<td>Sigma-Aldrich</td>
<td>N3014</td>
</tr>
<tr>
<td>BSA (Bovine Serum Albumin, Fraction V, heat shock, fatty acid free)</td>
<td>Roche Diagnostics</td>
<td>03 117 057 001</td>
</tr>
<tr>
<td>InstantBlue Ultrafast Protein Stain (Coomassie)</td>
<td>Sigma-Aldrich</td>
<td>ISB1L-1L</td>
</tr>
<tr>
<td>Humulin R U-100</td>
<td>Lilly</td>
<td>0002-8215-17</td>
</tr>
<tr>
<td>Collagenase</td>
<td>Sigma-Aldrich</td>
<td>C9263</td>
</tr>
<tr>
<td>Histopaque-1077</td>
<td>Sigma-Aldrich</td>
<td>10771</td>
</tr>
<tr>
<td>Histopaque-1119</td>
<td>Sigma-Aldrich</td>
<td>11191</td>
</tr>
<tr>
<td>Glutamine</td>
<td>Thermo Fisher Scientific</td>
<td>25030081</td>
</tr>
<tr>
<td>L-leucine</td>
<td>Sigma-Aldrich</td>
<td>61819</td>
</tr>
<tr>
<td>Fish Gelatin</td>
<td>Sigma-Aldrich</td>
<td>G7041</td>
</tr>
<tr>
<td>Casein</td>
<td>Sigma-Aldrich</td>
<td>C3400</td>
</tr>
<tr>
<td>HALT protease inhibitor cocktail</td>
<td>Thermo Fisher Scientific</td>
<td>78420B</td>
</tr>
<tr>
<td>Alamethicin</td>
<td>Sigma-Aldrich</td>
<td>A5361</td>
</tr>
<tr>
<td>SuperSignal West Pico Chemiluminescent Substrate</td>
<td>Thermo Fisher Scientific</td>
<td>34079</td>
</tr>
</tbody>
</table>

Critical Commercial Assays

<table>
<thead>
<tr>
<th>Critical Commercial Assays</th>
<th>Source</th>
<th>Identifier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat Insulin RIA</td>
<td>EMD Millipore</td>
<td>RI-13K</td>
</tr>
<tr>
<td>Stellux Chemi Rodent Insulin ELISA</td>
<td>Alpco</td>
<td>80-INSMR-CH01</td>
</tr>
<tr>
<td>Pierce Microplate BCA Protein Assay - Reducing Agent Compatible</td>
<td>Thermo Fisher Scientific</td>
<td>23252</td>
</tr>
</tbody>
</table>

Deposited Data

<table>
<thead>
<tr>
<th>Deposited Data</th>
<th>Source</th>
<th>PRIDE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Proteomic dataset used to identify methylcrotonyl-CoA carboxylase acylation sites</td>
<td>ProteomeXchange</td>
<td>PRIDE: PXD005896</td>
</tr>
</tbody>
</table>

(Continued on next page)
<table>
<thead>
<tr>
<th>REAGENT or RESOURCE</th>
<th>SOURCE</th>
<th>IDENTIFIER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimental Models: Cell Lines</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Human HEK293T stable mSIRT4 overexpressing</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Human HEK293T stable empty vector control</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>Human HEK293T</td>
<td>Dr Eric Verdin, Gladstone Institute</td>
<td>N/A</td>
</tr>
<tr>
<td>Experimental Models: Organisms/Strains</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mouse: 129-Sirt4tm1Fwa/J</td>
<td>Jackson Laboratory</td>
<td>012756</td>
</tr>
<tr>
<td>Mouse: C57BL/6J</td>
<td>Jackson Laboratory</td>
<td>000664</td>
</tr>
<tr>
<td>Mouse: C57BL/6NJ</td>
<td>Jackson Laboratory</td>
<td>005304</td>
</tr>
<tr>
<td>Oligonucleotides</td>
<td></td>
<td></td>
</tr>
<tr>
<td>mSIRT4 YEAR to FQ Forward: 5'-CGCCAGCGGT TCTGGGCCCAAAACTTTGTG-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>mSIRT4 YEAR to FQ Reverse: 5'-CTCAAAGTTTT GGGCCAGACCGCTGGCG-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>Sirt4 F: 5'-GTCTGTGCTTAGCTTCCTCAGT-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>Sirt4 R1: 5'-TAAAGATAATGTAAGTCACC-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>Sirt4 R2: 5'-AGAGCCCAAGTGTGCTGGTGTTG-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>mSirt4 238-259: 5' -CCAGACAGAATAAGAAGAGCG-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>mSirt4 1446-1427: 5'-TTCTGCCTGGTCCTTTCC-3'</td>
<td>Custom-made by Integrated DNA Technologies</td>
<td>N/A</td>
</tr>
<tr>
<td>Recombinant DNA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GST-mSIRT4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pGEX-6P1</td>
<td>GE Healthcare</td>
<td>28-9546-48</td>
</tr>
<tr>
<td>N-His-SUMO-mSIRT4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>N-His-SUMO-mSIRT4 FQ</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pETite N- His SUMO Kan</td>
<td>Lucigen</td>
<td>49003</td>
</tr>
<tr>
<td>pBabe-mSIRT4</td>
<td>This paper</td>
<td>N/A</td>
</tr>
<tr>
<td>pBabe</td>
<td>Dr Chris Counter, Duke Univ Med Center</td>
<td>N/A</td>
</tr>
<tr>
<td>Software and Algorithms</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GraphPad Prism</td>
<td>GraphPad Software</td>
<td>N/A</td>
</tr>
<tr>
<td>SoftMax Pro 6.5</td>
<td>Molecular Devices</td>
<td>N/A</td>
</tr>
<tr>
<td>Image Studio Ver 3.0.12 and Ver 3.1.4</td>
<td>LI-COR Biosciences</td>
<td>N/A</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Immobilon-P membrane</td>
<td>Millipore</td>
<td>IPVH00010</td>
</tr>
<tr>
<td>Sephadex G-25</td>
<td>GE Healthcare</td>
<td>17-0851-01</td>
</tr>
<tr>
<td>NativePAGE 4-16% Bis Tris gels</td>
<td>Invitrogen</td>
<td>BN2111</td>
</tr>
<tr>
<td>NativePAGE Sample Prep Kit</td>
<td>Invitrogen</td>
<td>BN2008</td>
</tr>
<tr>
<td>QuikChange Mutagenesis II Kit</td>
<td>Agilent</td>
<td>200523</td>
</tr>
<tr>
<td>LI-COR Odyssey CLx Infrared Imaging System</td>
<td>LI-COR Biosciences</td>
<td>N/A</td>
</tr>
<tr>
<td>SpectraMax M2e plate reader</td>
<td>Molecular Devices</td>
<td>N/A</td>
</tr>
<tr>
<td>2300 EnSpire Multilabel Plate Reader, software version 4.10.3005.1440</td>
<td>Perkin Elmer</td>
<td>N/A</td>
</tr>
<tr>
<td>Amicon Ultra-15 10K concentrator</td>
<td>Millipore</td>
<td>UFC901024</td>
</tr>
<tr>
<td>Thin layer chromatography plates, silica gel-coated</td>
<td>Sigma-Aldrich</td>
<td>60768</td>
</tr>
<tr>
<td>Kodak storage phosphorimager screen</td>
<td>GE Healthcare</td>
<td>SD230</td>
</tr>
<tr>
<td>TissuLyser Bead Mill</td>
<td>QIAGEN</td>
<td>85300</td>
</tr>
</tbody>
</table>

(Continued on next page)
EXPERIMENTAL MODEL AND SUBJECT DETAILS

SIRT4-Overexpressing and Empty-Vector Stable 293T Cell Lines
The retroviral vector pBabe with a mouse SIRT4 coding region insert or without insert (empty vector control) were used to generate retrovirus. HEK293T cells (ATCC #CRL-3216, female) transduced with SIRT4 or empty vector retrovirus were selected with puromycin at 5 μg/mL to generate SIRT4-overexpressing and empty-vector control stable cell lines. The cells were maintained in DMEM with 10% fetal bovine serum. The parental retroviral vector pBabe was acquired from Dr. Chris Counter (Duke University Medical School) and the HEK293T cells from Dr Eric Verdin (Gladstone Institute, San Francisco, CA).

Animals
SIRT4KO mice were obtained from the Jackson Laboratory (Bar Harbor, ME, stock #012756) and backcrossed for 7 generations onto a C57BL/6J background obtained from Jackson Laboratory (Bar Harbor, ME, stock #000664). These mice were then backcrossed for another 3 generations onto the C57BL/6NJ background obtained from the Jackson Laboratory (Bar Harbor, ME, stock #005304) to re-introduce a functional nucleotide transhydrogenase (Nnt) gene, which is missing in the commonly used C57BL/6J mice. Mice were group-housed on a 12 hr light/dark cycle with free access to water and PicoLab Rodent Diet 20 (LabDiet #5053, St. Louis, MO). Age, sex, genotypes, and number of animals used per study are provided in the appropriate figure legends. Genotypes were determined using the Sirt4 F, Sirt4 R1, and Sirt4 R2 primers (sequences provided in Key Resources Table). All in vivo procedures were performed on healthy animals in accordance with the Duke Institutional Animal Care and Use Program.

METHOD DETAILS

Protein Alignment and Structural Predictions
To determine the putative nucleotide binding regions, protein sequences and binding regions of each of the seven human sirtuins were obtained from Uniprot (www.uniprot.org) (SIRT1, Uniprot: Q96EB6; SIRT2, Uniprot: Q8IXJ6; SIRT3, Uniprot: Q9NTG7; SIRT4, Uniprot: Q9Y6E7; SIRT5, Uniprot: Q9NXA8; SIRT6, Uniprot: Q8N6T7; SIRT7, Uniprot: Q9NRC8). COBALT (Papadopoulos and Agarwala, 2007) and Uniprot were used for protein alignment. To determine the predicted secondary structure of the mitochondrial sirtuins, primary protein sequences of the three mitochondrial human sirtuins were obtained from Uniprot: http://www.uniprot.org (SIRT3, Uniprot: Q9NTG7; SIRT4, Uniprot: Q9Y6E7; SIRT5, Uniprot: Q9NXA8), and entered into the PredictProtein server: https://predictprotein.org/ (Rost and Liu, 2003); data accessed and downloaded October 2011. Alpha-helices were predicted using Helical TransMembrane Segment Rotational Angle Prediction: http://biotechnology.tbzmed.ac.ir/htmsrap/index.htm; data accessed and downloaded December 2012.

Phylogenetic Analyses and Scoring
We downloaded all 5,869 protein sequences from Uniprot containing a significant match to the Pfam (version 27.0) SIR2 (PF02146) domain (Finn et al., 2014). We built a phylogenetic tree from the sirtuin domain portions of all of these sequences with length greater than 40 residues using the WAG-CAT model in FastTreeMP (Price et al., 2010), version 2.1.8. Figure S1C shows the location of the seven human sirtuins in this tree. This tree, based on sirtuin-like sequences from more than 3,000 species supports the previous grouping of the human sirtuins into four classes: SIRT1-3 occupy class I, SIRT4 occupies class II, SIRT5 occupies class III, and SIRT6 and 7 occupy class IV. In addition, it supports several more recent suggestions (Greiss and Gartner, 2009), including: the relationship between SIRT2 and SIRT3 within class I, the existence of a largely fungal-specific sub-group in class I, and the great diversity of class III sirtuins. Furthermore, it suggests additional groups of sirtuins in non-human species (Figure S1C).

To enable the identification of specific sites within SIRT4 that were likely to influence its enzymatic specificity, we subsampled the available sirtuin sequences to a set of 811 within the Pfam set of representative proteomes at 15% co-membership in UniRef50 clusters (Chen et al., 2011). We further selected a random 10% of these (including all human sirtuins), resulting in 81 sirtuins spanning the
four classes. We used PROMALS3D (Pei et al., 2008) to build a 3D structure-aware alignment guided by representative structures available for human sirtuins (4IF6 A, 1J8F A, 3GLR A, 2B4Y A, 3K35 A). We further constrained PROMALS3D to respect the alignment of the alpha helical region (Figure 1). We assigned each sirtuin in the alignment to the class of the nearest human sirtuin in a tree of these sequences generated as described above. We then applied the GroupSim algorithm (Capra and Singh, 2008) with no window to the resulting alignment (Figure S1D) and classification of the sirtuins.

GroupSim identifies alignment columns in which the amino acid patterns respect the assignment of the proteins to classes. Columns in which the amino acids within a group are similar and different from the amino acids in other groups receive high scores. In the sirtuin alignment, SIRT4 position 103 received the highest score (Figure S1D). The second and third highest scoring columns (229 and 228) appeared to distinguish class IV and class III from the other classes, respectively, but the fourth highest scoring column (267, near the end of the sirtuin domain) appeared to distinguish class II (predominantly S) from other classes (predominantly P). The position immediately downstream of 103 received the sixth highest score. These class II specific amino acid preferences for these positions in the alpha helix provide an evolutionary signature that suggests the importance of this region to SIRT4 activity.

Structural Analyses

All molecular modeling studies were conducted using Accelrys Discovery Studio 4.0 (Accelrys Software, Inc., San Diego, CA; http://accelrys.com). All crystal structure coordinates were downloaded from the protein data bank (http://www.wwpdb.org). The homology model of human SIRT4 was constructed with the MODELER protocol (Eswar et al., 2008) using crystal structures of SIRT2, SIRT5, and SIRT6 as templates (PDB: 3ZGV, 3RIY, and 3ZG6, respectively). The crystal structure coordinates of the succinylated histone H3K9 peptide co-crystallized with SIRT5 were transferred to the SIRT4 structure during the generation of the homology model. The structures of SIRT5 (3RIY) and SIRT3 (3GLR) (Jin et al., 2009) also contain co-crystallized modified peptides that were utilized in the modeling studies. Additional modifications were built onto the Lys residue and each of the respective structures were subjected to energy minimization utilizing the conjugate gradient minimization protocol with a CHARMM forcefield (Brooks et al., 2009) and the Generalized Born implicit solvent model with simple switching (Feig et al., 2004). All minimization calculations converged to an RMS gradient of < 0.001 kcal/mol. Interaction energies were then calculated between the entire respective modified peptides and the protein structures using the implicit distance-dependent dielectric model, which represents the sum total of both Van der Waals and electrostatic interactions. Although the entirety of the modified peptides was utilized in the calculations, for clarity only the modified Lys residue is depicted in Figure 2.

SIRT4 Cloning and Recombinant Protein Expression

A cDNA library of expressed mouse liver genes was synthesized using reverse transcriptase. Since the mouse SIRT4 mRNA sequence is known (NM 001167691), 5' and 3' primers against SIRT4 untranslated regions, mouse Sirt4 238-259 and 1446-1427 (see Key Resources Table), respectively, were designed and used to amplify by PCR the entire Sirt4 coding region from the cDNA library. After validation of the PCR product by DNA sequencing, the PCR product was sub-cloned into a mammalian expression vector and a FLAG-tag was engineered at the C terminus of the SIRT4 protein. FLAG-tagged SIRT4 protein was overexpressed in 293T cells and immunoprecipitated with FLAG resin. Newly synthesized proteins destined for the mitochondria often have a targeting signal consisting of a 10-70 amino acid long peptide at the N terminus. Often, the target signal is cleaved once targeting to the mitochondria has been completed, similar to the other mitochondrial sirtuins (Nakagawa et al., 2009; Schwer et al., 2006). By sequencing overexpressed SIRT4-FLAG protein we identified a putative mitochondrial target signal at residues 1-23 that agrees with previously published reports (Haigis et al., 2006). This information allowed us to clone a truncated version of SIRT4 that encodes the processed, mature protein (residues 24-333) into pGEX-6P1 glutathione S-transferase (GST) expression vector (GE Healthcare, #28-9546-48) for expression of a GST-SIRT4 fusion protein in bacteria. Site-specific proteolysis of the fusion protein with PreScission Protease (GE Healthcare, #27-0843-01) allowed separation of the SIRT4 protein from the GST tag. DNA encoding the processed, mature SIRT4 protein (residues 24-333) was also cloned into the pETite N-His SUMO Kan vector (Lucigen Corporation, #49003) for expression of a His SUMO-SIRT4 fusion protein in bacteria. In this case, site-specific proteolysis of the fusion protein with SUMO Express Protease (Invitrogen, #12588-018) allowed separation of the SIRT4 protein from the His-SUMO tag. Site-directed mutagenesis of SIRT4 catalytic pocket tyrosine 105 to phenylalanine and arginine 108 to glutamine (Y105F and R108Q; FQ mutant) was made using the QuikChange Mutagenesis II kit (Agilent, #200523) and mutagenic forward primer 5'-CGCCAGCGGTCTGGGCCCAAAA CTTGTG-3' and reverse primer 5'-CTCAAAATTTTGGCCAGAACCGCTGGC-3'.
of 4°C Dulbecco’s PBS, pH range 7.1-7.5 (Sigma) per 400 mL bacterial culture. The centrifugation was repeated, and after decanting the supernatant, the cell pellets were stored at −80°C until needed for the subsequent protein purification.

SIRT4 Purification with Tag Cleaved

Unless otherwise noted, all steps were performed on ice with buffers cooled to 4°C. Cell pellets were thawed and re-suspended in Lysis Buffer (15 mL per 400 mL culture). Lysis Buffer consisted of Dulbecco’s PBS (Sigma) with an additional 150 mM NaCl added by dissolving solid NaCl, resulting in pH ~7.1 at room temperature. The cell suspension was sonicated on ice for four cycles (20 s per cycle with 2 min between cycles) using a Fisher Scientific 60 Sonic Dismembrator on a power setting of between 6-7. After sonication, Triton X-100 was added to a concentration of 1% (v/v) based on the original volume of Lysis Buffer added. The extract was then rotated end-over-end for 30 min at 4°C, followed by centrifugation (12,000 x g for 20 min. at 4°C) to isolate the soluble fraction (supernatant). The soluble fraction was collected and centrifuged again (12,000 x g for 20 min. at 4°C). In preparation for the batch affinity chromatography, Glutathione Sepharose 4 FastFlow resin (GE Healthcare) was equilibrated in 15 mL plastic centrifuge tubes with Lysis Buffer by washing twice with approximately 5 bed volumes. Prior to the Lysis Buffer washes, the initial bead slurry was centrifuged (500 x g for 5 min at 4°C), and the supernatant was decanted. Each wash consisted of manually re-suspending the resin by inversion, followed by centrifugation (500 x g for 5 min at 4°C) and decanting of the supernatant. A 1 mL total bed volume of resin was used for cultures ≤ 1.6L with the resin and supernatant split into volumes that fit into 50 mL plastic centrifuge tubes. After the resin was washed, it was re-suspended in 1 mL Lysis Buffer and added to the extract in the 50 mL tube. The protein was allowed to bind to the resin overnight with end-over-end rotation at 4°C. The next day the resin was pelleted by centrifugation (1500 x g for 5 min at 4°C), and the supernatant was decanted. The resin with the bound protein was washed with approximately 10-11 column volumes of Wash Buffer (Dulbecco’s PBS with an additional 359 mM NaCl added, resulting in pH ~6.9 at room temperature). Then two additional washes of approximately 5 column volumes each of Wash Buffer were completed. Each of the three washes consisted of manually re-suspending the resin by inversion and then rotating end-over-end for 15 min at 4°C. The 1500 x g spin was repeated each time, and the supernatant was decanted. After decanting the supernatant from the third wash, the resin with bound protein was then washed twice with 10-11 column volumes each of Cleavage Buffer (50 mM Tris-HCl, pH 7.9 or 8.0 at room temperature, 150 mM NaCl, 1 mM EDTA, 0.01% (v/v) Triton X-100, 1 mM DTT). The Cleavage Buffer washes consisted of manually inverting the resin several times to re-suspend and then rotating end-over-end for 15 min at 4°C. Centrifugation (1500 x g spin for 5 min at 4°C) was performed between washes, and the supernatant was decanted. If enzyme was desired with the GST-tag removed (cleaved SIRT4) after completion of the Cleavage Buffer washes, a 4% (v/v) solution of PreScission Protease (GE Healthcare) in Cleavage Buffer was added to the bead pellet and then transferred to a 2 mL microfuge tube. The resin was re-suspended by inverting the tube and then rotated end-over-end overnight at 4°C. Following the overnight cleavage, the resin was pelleted by centrifugation (1500 x g for 5 min at 4°C). The supernatant containing the cleaved SIRT4 was removed, and the resin was washed with 1 mL Cleavage Buffer. The wash consisted of end-over-end rotation for 5 min at 4°C, followed by centrifugation (1500 x g for 5 min at 4°C). The resulting supernatant from the wash was decanted and combined with the first supernatant containing the cleaved SIRT4. The final cleaved SIRT4 solution was buffer exchanged and concentrated in Exchange Buffer A (20 mM Tris-HCl, pH 7.9 at room temperature, 50 mM NaCl, 1 mM CHAPSO, 5% (v/v) glycerol, 1 mM DTT) or Exchange Buffer B (19.9 mM Tris-HCl, pH 8.0 at room temperature, 49.5 mM NaCl, 1 mM CHAPSO, 22.8% (v/v) glycerol, 1 mM DTT) by performing two sequential dilutions (10-11 fold) and three concentration steps using a 10,000 MWCO Amicon Ultra-15 concentrator. Based on buffer densities and protein solution weights, when using Exchange Buffer A the calculated resulting storage buffer was 20.3 mM Tris-HCl, pH 7.9 at room temperature, 50.8 mM NaCl, 0.0084 mM EDTA, 0.99 mM CHAPSO, 4.96% (v/v) glycerol, 0.084 mM glutathione, 0.00008% (v/v) Triton X-100, 1 mM DTT. Protein was stored at 4°C and used as soon as possible to maintain activity for enzyme assays. Typically, the purified protein solution was an approximately 80% pure mixture of cleaved and uncleaved SIRT4 with the percentage of SIRT4 being cleaved within the range of 11%-24%.

SIRT4 Purification with Tag Uncleaved

Unless otherwise noted, all steps were performed on ice with buffers cooled to 4°C. To produce purified uncleaved GST-SIRT4 after completion of the Cleavage Buffer (50 mM Tris-HCl, pH 7.9 at room temperature, 150 mM NaCl, 1 mM EDTA, 0.01% (v/v) Triton X-100, 1 mM DTT) washes, the resin was re-suspended in one column volume of Cleavage Buffer containing 10 mM glutathione and transferred to a 2 mL microfuge tube. The resin was then rotated end-over-end for 5 min at 4°C, followed by centrifugation (1500 x g for 5 min at 4°C). The resulting supernatant was decanted and saved, and then four additional elution steps were performed. After assessment of the elution fractions by SDS-PAGE, fractions containing GST-SIRT4 were combined and buffer exchanged and concentrated as described above. The Exchange Buffer A described above was used and based on buffer densities and protein solution weights, the calculated resulting storage buffer was 20.3 mM Tris-HCl, pH 7.9 at room temperature, 50.8 mM NaCl, 0.0084 mM EDTA, 0.99 mM CHAPSO, 4.96% (v/v) glycerol, 0.084 mM glutathione, 0.00008% (v/v) Triton X-100, 1 mM DTT. Protein was stored at 4°C and used as soon as possible to maintain activity for enzyme assays. Protein purity and total protein concentration was determined by the Pierce Microplate BCA Protein Assay - Reducing Agent Compatible (Thermo Fisher Scientific) using bovine serum albumin (BSA) as a standard. Purified protein was stored at 4°C or 0°C on ice and used as soon as possible to maintain activity for enzyme assays. Typically, the purified protein solution was an approximately 80% pure mixture of cleaved and uncleaved SIRT4 with the percentage of SIRT4 being cleaved within the range of 11%-24%.
determined as described above. The uncleaved GST-SIRT4 purity was determined to be 60%–65% by SDS-PAGE and the LI-COR Odyssey CLx Infrared Imaging System with Image Studio software (LI-COR Biosciences).

Bacterial Cell Culture Conditions for Alternative Recombinant SIRT4 Protein
A starter culture (100 mL) of BL21 (DE3) pLysS bacteria expressing wild-type or FQ mutant mouse His-SUMO-SIRT4 was started from previously made 25% (v/v) glycerol stocks in LB Broth containing 30 μg/mL kanamycin and incubated overnight at 30°C in an orbital shaker at 225 rpm. The pLysS component of the bacterial strain was not selected. The following day 400 mL cultures in LB Broth containing 30 μg/mL kanamycin were seeded from the starter culture at an OD600 of 0.05 and incubated at 30°C in an orbital shaker at 225 rpm to an OD600 of 0.6–0.7. The cultures were cooled on ice to 18°C then induced by the addition of 0.5 mM IPTG. The induction period was 18 hr at 18°C in an orbital shaker at 225 rpm. Typically, the cultures reached an OD600 of approximately 3 during the induction period. Cells were harvested by centrifugation (7,700 x g for 10 min at 4°C) and then re-suspended in Dulbecco’s PBS, pH range 7.1–7.5 (Sigma; 60 mL total for 1.6 L culture). The centrifugation was repeated, and after decanting the supernatant, the cell pellets were stored in 50 mL plastic centrifuge tubes at −80°C until needed for the subsequent protein purification.

SIRT4-His-SUMO Purification
Unless otherwise noted, all steps were performed on ice with buffers cooled to 4°C. Buffers employed were the following:

(1) Buffer 1: 20 mM Tris-HCl, pH 7.5 at room temp, 50 mM NaCl, 1 mM CHAPSO, 1 mM DTT
(2) Lysis Buffer: Bacterial Protein Extraction Reagent (B-PER containing 20 mM Tris-HCl, pH 7.5, Thermo Fisher Scientific) with the addition of 20 mM imidazole, pH 7.5 at room temp, 1 mM DTT, 100U/mL Pierce Universal Nuclease
(3) Elution Buffer: 20 mM Tris-HCl, pH 7.5 at room temp, 50 mM NaCl, 500 mM imidazole, 1 mM CHAPSO, 1 mM DTT
(4) Binding Buffer 1: B-PER containing 20 mM Tris-HCl, pH 7.5 with the addition of 20 mM imidazole, pH 7.5 at room temp, 1 mM DTT
(5) Binding Buffer 2: 20 mM Tris-HCl, pH 7.5 at room temp, 50 mM NaCl, 20 mM imidazole, 1 mM CHAPSO, 1 mM DTT
(6) Wash Buffer 1: 1:1 ratio of B-PER and additional buffer containing 20 mM Tris-HCl, pH 7.5 at room temp, 100 mM NaCl, 40 mM imidazole, 2 mM DTT
(7) Wash Buffer 2: 20 mM Tris-HCl, pH 7.5 at room temp, 50 mM NaCl, 20 mM imidazole, 1 mM CHAPSO, 1 mM DTT
(8) Exchange Buffer: 20 mM Tris-HCl, pH 8.0 at room temp, 50 mM NaCl, 1 mM CHAPSO, 23% (v/v) glycerol, 1 mM DTT

Cell pellets were thawed and re-suspended in Lysis Buffer (10 mL/g of cell paste) in 50 mL centrifuge tubes. The re-suspended cells were then rotated end-over-end for 30 min at 4°C, followed by centrifugation (16,000 x g for 20 min. at 4°C) to isolate the soluble fraction (supernatant). The soluble fraction was collected and the 16,000 x g centrifugation was repeated. In preparation for batch affinity chromatography, a 0.125 mL bed volume of Ni Sepharose 6 FastFlow resin (GE Healthcare Life Sciences) was dispensed into 15 mL plastic centrifuge tubes. The resin was first centrifuged (500 x g for 5 min at 4°C) and then re-suspended in Dulbecco’s PBS, pH range 7.1–7.5 (Sigma; 60 mL total for 1.6 L culture). The centrifugation was repeated, and after decanting the supernatant, the cell pellets were stored in 50 mL plastic centrifuge tubes at −80°C until needed for the subsequent protein purification.
and decanting of the supernatant. After the resin was equilibrated with Binding Buffer 2, the 0.125 mL bed volume was re-suspended in a volume of Binding Buffer 2 equal to the previously diluted cleavage reaction and added to the cleavage reaction in the 2 mL tube. The protein was allowed to bind to the resin for 2 hr with end-over-end rotation at 4°C. The resin was pelleted by centrifugation (500 x g for 5 min at 4°C), and the supernatant containing the cleaved SIRT4 was removed and saved. The resin was washed twice with 10 bed volumes of Binding Buffer 2. Each wash consisted of gently re-suspending the resin manually and then rotating end-over-end for 15 min at 4°C followed by centrifugation (500 x g for 5 min at 4°C) and removal of the supernatant. The 3 supernatants were combined and concentrated approximately 4.5-fold using a 10,000 MWCO Amicon Ultra-15 concentrator. The sample was then diluted 10-fold with Exchange Buffer and concentrated approximately 10-fold. An additional 10-fold dilution with Exchange Buffer was performed followed by another concentration of approximately 10-fold. Based on buffer densities and protein solution weights, the calculated final buffer composition was 20 mM Tris-HCl, pH 8.0 at room temp, 50 mM NaCl, 1 mM CHAPS, 1 mM DTT, 0.2 mM imidazole, 0.16% (v/v) Igepal (NP-40), 22.8% (v/v) glycerol. The resulting purified protein solution was stored at 4°C on ice and used as soon as possible to maintain activity for enzyme assays. Protein purity was determined by SDS-PAGE, Coomassie InstantBlue stain, and the LI-COR Odyssey CLx Infrared Imaging System with Image Studio software (LI-COR Biosciences). Total protein concentration was determined by the Pierce Microplate BCA Protein Assay - Reducing Agent Compatible (Thermo Fisher Scientific) using bovine serum albumin (BSA) as a standard. The purified protein solution was an approximately 21%–27% pure mixture of total SIRT4 (cleaved and uncleaved) with approximately 68% of the SIRT4 being cleaved.

Peptide Substrate Syntheses
All modified peptide substrates were synthesized from a common unmodified intermediate (S2, see scheme below), as described in literature (Madsen and Olsen, 2012). The syntheses of LGKac (Madsen and Olsen, 2012; Wegener et al., 2003), LGKsuc (Madsen and Olsen, 2012), and Kmal (Madsen and Olsen, 2012) have been previously reported. See substrate-specific information below. Briefly, the AMC fluorophore was introduced by POCl3 mediated coupling to Fmoc-Lys(Boc)-OH followed by mild Fmoc group deprotection which afforded intermediate S1 in high yield. Standard peptide coupling using N,N'-disopropylcarbodiimide and HOBt as coupling reagents, followed by removal of the Boc protection group furnished common intermediate S2, which could be functionalized to give LGK substrates (LGKac, LGKsuc, LGKgln, LGKmg, and LGKhmg). Lysine derivative S1 was also used to prepare K substrates (Klp and Kmal). LGKmhc was synthesized from known methyl (E)-5-hydroxy-3-methylpent-2-enoate (S4) (White et al., 1982) by ester hydrolysis, coupling with common intermediate S2 followed by oxidation.

All reagents and solvents were of analytical grade and used without further purification as obtained from commercial suppliers. Anhydrous solvents were obtained from a PureSolv-system (THF) or dried over molecular sieves (CH2Cl2 and pyridine, 4 Å; MeCN, 3 Å). Reactions were conducted under an atmosphere of argon or nitrogen whenever anhydrous solvents were used. Vacuum
liquid chromatograph (VLC) was performed using silica gel 60 (particle size 0.015–0.040 mm). LC–MS analyses of synthesized compounds were performed on a Waters Acquity ultra high-performance liquid chromatography system. A linear gradient of 0% to 95% acetonitrile in water over 2.5 min or 5.2 min with constant 0.1% formic acid was applied at a flow rate of 0.6 mL/min. Compounds purified by preparative reverse-phase HPLC were purified on a C18 Phenomenex Luna column (250 mm × 20 mm, 5 μm, 100 Å) on an Agilent 1260 LC system equipped with a diode array UV detector and an evaporative light scattering detector (ELSD), using a linear gradient of 5% to 100% acetonitrile in water at t = 5–45 min with constant 0.1% trifluoroacetic acid applied at a flow rate of 20 mL/min. Nucleic magnetic resonance (NMR) spectra were recorded on a Bruker Avance-III HD (1H, 600 MHz; 13C, 151 MHz), Bruker Ascend-400 (1H, 400 MHz; 13C, 101 MHz) or Varian Mercury 300 (1H, 300 MHz; 13C, 75.5 MHz). Chemical shifts are reported in ppm relative to deuterated solvent as internal standard (δH: DMSO-d6, 2.50 ppm; δC: DMSO-d6, 39.52 ppm). Assignments of NMR spectra are based on correlation spectroscopy (COSY, HSQC, HMOC, and/or HMBC spectra). Accurate mass verification measurements (HRMS) were performed on a maXis G3 quadrupole time-of-flight (TOF) mass spectrometer (Bruker Daltonics, Bremen, Germany) equipped with an electrospray (ESI) source. All compounds were > 95% pure as determined by HPLC and 1H NMR analysis.

To synthesize LGKac, the title compound and the starting material (Ac-Leu-Gly-Lys-(7-amino-4-methyl-coumarin) trifluoroacetate salt, S2) were synthesized according to literature (Madsen and Olsen, 2012). Ac-Leu-Gly-Lys-(7-amino-4-methyl-coumarin) trifluoroacetate salt (S2) (49 mg) was suspended in anh CH2Cl2 (4 mL) and iPr2NEt (63 mg, 488 μmol) was added followed by addition of Ac2O (12 mg, 115 μmol). After stirring for 1 hr at rt, the reaction mixture was taken up in half sat brine. The aqueous phase was washed with sat aq NaHCO3 (10 mL) and the aqueous phase back extracted with CH2Cl2 (3 × 20 mL). The combined organic phase was then washed with sat aq NaHCO3 (10 mL) and the aqueous phase back extracted with CH2Cl2 (3 × 20 mL). The combined organic phase was dried over MgSO4 then evaporated to dryness and purified by HPLC, affording Ac-Leu-Gly-Lys(acetyl)-(7-amino-4-methyl-coumarin) (LGKac, 13 mg, 34% from Ac-Leu-Gly-Lys(Boc)-(7-amino-4-methyl-coumarin)) as a white foam. Characterization data was in agreement with the literature (Madsen and Olsen, 2012; Wegener et al., 2003).

To synthesize LGKuc, the title compound was synthesized according to the literature (Madsen and Olsen, 2012). Ac-Leu-Gly-Lys-(7-amino-4-methyl-coumarin) trifluoroacetate salt (S2) (50 mg) was suspended in anh CH2Cl2 (2 mL) and iPr2NET (0.1 mL) at rt under N2. Succinic anhydride (13 mg, 133 μmol) was added, giving immediately a clear suspension. After stirring for 55 min, the reaction mixture was evaporated to dryness. The resulting residue was then purified by preparative HPLC to afford desired Ac-Leu-Gly-Lys(3-methylglutaryl)-(7-amino-4-methyl-coumarin) (LGKmg, 29 mg, 87% from Ac-Leu-Gly-Lys(Boc)-(7-amino-4-methyl-coumarin)) as a white fluffy material.
0.88 (d, J = 6.6 Hz, 3H, CH₃leu,A), 0.86–0.82 (m, 6H, CH₂leu,B,33-MG–CH₃), 13C NMR (DMSO-d₆) δ 173.6 (CO₂H), 172.9 (CO₂leu), 171.4 (CO₂lys), 170.8 (CONH₃⁺), 169.7 (CH₂CO), 169.0 (CO₂gly), 160.0 (C₂4AMC), 153.6 (C₈aAMC), 153.1 (C₄AMC), 142.1 (C₇AMC), 125.9 (C₉AMC), 115.3 (C₆AMC), 115.2 (C₄AMC), 112.4 (C₃AMC). 105.8 (C₈AMC), 53.6 (C₂3-MG), 51.5 (C₁₂r,leu), 42.2 (C₂CHONH), 42.1 (C₂gly), 40.7 (CH₂CO₂H), 40.5 (C₂gly), 38.2 (C₂lys), 31.4 (C₁₂lys), 28.8 (C₁₂r,leu), 27.4 (C₆AMC), 24.2 (C₁₂r,leu), 22.9 (C₁₂lys), 22.5 (CH₂CO), 21.6 (CH₃leu,B), 19.4 (C₃-MG–CH₃), 18.0 (4AMC–CH₃).

To synthesize LGKhmG, 3-Hydroxy-3-methyl-glutaric acid (14.9 mg, 92 µmol) was suspended in anh CH₂Cl₂ (1.5 ml) at r.t., then N,N'-disopropylcarbodiimide (13 µl, 83 µmol) was added and the reaction stirred for 2 hr, affording a clear solution, to which Ac-Leu-Gly-Lys-(7-amino-4-methyl-coumarin) trifluoroacetate salt (S2, 51 mg, 80 µmol) was added, resulting in a white fluffy material. After stirring for 2 hr, pyridine (90 µl, 1.11 mmol) and a catalytic amount of 4-(N,N-dimethylamino)pyridine were added. An additional aliquot of 3-hydroxy-3-methyl-glutaric acid (15.5 mg, 96 µmol) and N,N'-disopropylcarbodiimide (13 µl, 83 µmol) was added in anh CH₂Cl₂ (1.5 ml) for 2 hr at r.t. then added to the reaction mixture, and the reaction stirred for additional 22 hr. Addition of water (0.5 mL) and DMF (0.5 mL) followed by concentration of the reaction mixture to approx 1.5 mL followed by direct purification by preparative HPLC afforded desired Ac-Leu-Gly-Lys-(3-hydroxy-3-methylglutaric)-Lys-(7-amino-4-methyl-coumarin) (LGKhmg, 40 mg, 76%) as yellow fluffy material. 1H NMR (400 MHz, DMSO-d₆) δ 10.37 (s, 1H, NHAMC), 8.33 (t, J = 5.8, 1H, NHgly), 8.10 (d, J = 7.3, 1H, NHleu), 8.02 (d, J = 7.1, 1H, NHlys), 7.99 (t, J = 5.6, 1H, NHlys), 7.81 (d, J = 2.0, 1H, H8AMC), 7.73 (d, J = 8.7, 1H, H5AMC), 7.54 (dd, J = 8.7, 2.1, 1H, H6AMC), 6.28 (d, J = 1.4, 1H, H3AMC), 4.40 (td, J = 8.1, 1.1, 1H, H₂leu,B), 4.24 (dt, J = 8.4, 7.1, 1H, H₁leu), 3.77 (m, J = 16.7, 5.8, 1H, Hgly), 3.73 (m, J = 16.7, 5.8, 1H, Hgly), 3.07 (q, J = 6.7, 2H, H₂lys), 2.45–2.42 (m, 2H, CH₂CO₂H), 2.41 (d, J = 1.2, 3H, 4AMC-CH₃), 2.37 (br s, 2H, NHCOCH₂), 1.87 (s, 3H, CH₃CO), 1.84–1.89 (m, 1H, H₁₂lys,A), 1.71–1.57 (m, 2H, H₂leu,B,leu,H₂lys), 1.54–1.24 (m, 6H, H₂leu,B,leu,H₂lys), 1.21 (s, 3H, CH₃COH), 0.90 (d, J = 6.6, 3H, CH₃leu,A), 0.86 (s, J = 6.5, 3H, CH₃leu,B). 13C NMR (DMSO-d₆) δ 172.9 (CO₂lys), 172.8 (CO₂lys), 171.4 (CO₂lys), 171.0 (CO₂lys), 170.1 (CO₂lys), 169.7 (CO₂lys), 169.0 (CO₂lys), 160.0 (C₂4AMC), 153.6 (C₈aAMC), 150.3 (C₄AMC), 142.1 (C₇AMC), 125.9 (C₉AMC), 115.3 (C₆AMC), 115.2 (C₄AMC), 112.4 (C₃AMC). 105.8 (C₈AMC), 53.6 (C₂3-MG), 51.5 (C₁₂r,leu), 42.2 (C₂CHONH), 42.1 (C₂gly), 40.7 (CH₂CO₂H), 40.5 (C₂gly), 38.2 (C₂lys), 31.4 (C₁₂lys), 28.8 (C₁₂r,leu), 27.4 (C₆AMC), 24.2 (C₁₂r,leu), 22.9 (C₁₂lys), 22.5 (CH₂CO), 21.6 (CH₃leu,B), 19.4 (C₃-MG–CH₃), 18.0 (4AMC–CH₃).

Ac-Leu-Gly-Lys-(7-amino-4-methyl-coumarin) trifluoroacetate salt (S3, 102 mg) was dissolved in MeCN (1.5 mL) and Pyr(NET) (0.06 mL). Potassium monomethyl maleate (40 mg, 0.254 mmol) and HATU (92 mg, 0.241 mmol) was premixed for 10 min in MeCN (1 mL), then added to the amine. After stirring for 3 hr, MeOH (2 mL) was added, then the reaction mixture adsorbed directly onto cello and purified by VLC (0%–5% MeOH in CH₂Cl₂), to afford...
desired methylmalonate amide (44 mg, 49% from Ac-Lys(Boc)-(7-amino-4-methyl-coumarin)) as a white foam. Characterization data was in agreement with the literature (Madsen and Olsen, 2012). Methyl ester (101 mg, 0.227 mmol) was suspended in THF (1.2 mL) and aq LiOH (1.0 M, 1.2 mL), affording a clear solution after stirring for 30 s. After 30 min, aq HCl (2M, 0.5 mL) was added followed by addition of sat aq NaHCO₃ (0.2 mL), then the reaction mixture was concentrated to approx 2 mL and purified directly by prep-HPLC, affording the desired Ac-Lys(malonyl)-(7-amino-4-methyl-coumarin) (Kmal, 80 mg, 81%) as a white fluffy material. Characterization data was in agreement with the literature (Madsen and Olsen, 2012).

To synthesize Klipoyl, (R)-Lipoic acid (36 mg, 175 μmol) and HOBt (26 mg, 190 μmol) was suspended in anh CH₂Cl₂ (2.2 mL) at 0°C, followed by addition of iPr₂NET (57 μL, 327 μmol) and N,N’-disopropylcarbodiimide (22 μL, 142 μmol). After stirring for 10 min, Ac-Lys-(7-amino-4-methyl-coumarin) trifluoroacetate salt (33 mg, 50 μg, 109 μmol) was added, stirring was continued for 1 h, and directly purified by prep-HPLC, to afford desired Ac-Lys(((534.2091). 1H NMR (DMSO-d₆) δ 11.9 (s, 1H, C=O), 9.9 (s, 1H, C=O), 7.74 (t, J = 5.7, 1H, NH₃), 7.72 (d, J = 8.7, 1H, H₅AMC), 7.49 (dd, J = 8.7, 2.1, 1H, H₆AMC), 6.26 (t, J = 1.2, 1H, H₃AMC), 4.36 (td, J = 8.1, 5.5, 1H, H₃), 3.57 (d, J = 8.7, 6.2, 1H, CH₂S), 3.17 (ddd, J = 10.9, 6.9, 5.5, 1H, CH₂AS), 3.10 (dt, J = 11.0, 6.8, 1H, CH₂S), 3.01 (q, J = 6.5, 2H, CH₂S), 2.44–2.34 (m, 4H, CH₂(S)CH₂CH₃,S₄AMC-CH₃), 2.01 (t, J = 7.4, 2H, NHCOCH₂), 1.87 (s, 3H, CH₃CONH), 1.82 (dt, J = 12.7, 6.8, 1H, CH(S)CH₂CH₃,S₄AMC-CH₃), 1.74–1.54 (m, 3H, CH₃, CH₂CH₃CH₂CH₃,S₄AMC-CH₃), 1.54–1.21 (m, 9H, CH₂,S₄AMC-CH₃,CH₂S₄AMC-CH₃). UPLC-MS tᵣ 1.77 min, m/z 534.2 ([M+H⁺]⁺, C₉₂H₈₃N₃O₅S₂⁺ Calcd 534.2; [M+H⁺]+, C₉₂H₈₃N₃O₅S₂⁺ Calcd 534.2091).

Chemical Acylation of Bovine Serum Albumin

Bovine serum albumin (BSA), fatty acid free (Sigma #A7030) at 2 mg/mL in 0.1 M sodium bicarbonate, pH 8.0, was mixed with acetic, succinic, glutaric, 3-methylglutaric anhydride (Sigma-Aldrich #91204, #239690, #G3806, #M47809) or 3-hydroxy-3-methylglutaric anhydride (Sigma-Aldrich #91204, #239690, #G3806, #M47809) and nicotinamide (N3376) were from Sigma-Aldrich (Steinheim, Germany). Screening for substrate deacylation activity was performed following which, 20 mM Tris-HCl, pH 8.0, was added and the assay development was allowed to proceed for 90 min at room temperature. Acylated-BSA or 0.5 mM acyl substrates (50 mM, NaCl (137 mM), KCl (2.7 μM), MgCl₂ (1 μM), pH 8.0) with addition of BSA (1.0 mg/mL). BSA (A7030), trypsin (T1426), NAD⁺ (N7004), and nicotinamide (N3376) were from Sigma-Aldrich (Steinheim, Germany). Screening for substrate deacylation activity was performed with end-point fluorophore cleavage by trypsin. Reactions were performed in black low binding 96-well microtiter plates (Corning N7004), and nicotinamide (N3376) were from Sigma-Aldrich (Steinheim, Germany). Screening for substrate deacylation activity was performed following which, 20 mM Tris-HCl, pH 8.0, was added and the assay development was allowed to proceed for 90 min at room temperature before fluorescence analysis. All plates were analyzed using a Perkin Elmer 2300 EnSpire Multilabel Plate Reader with excitation at 360 nm and detecting emission at 460 nm. Fluorescence measurements were converted to [AMC] concentrations based on an RFU-[AMC] standard curve to afford [AMC] relative to control wells, and all data analysis was performed using GraphPad Prism.
SIRT4 Peptide Substrate Profiling

The assay was as described above with the following exceptions. NAD⁺ (N3014) and nicotinamide (72340) were from Sigma-Aldrich, and BSA (03117057001) was from Roche Diagnostics. The final concentrations of acyl substrate and NAD⁺ were 500 μM and 3 mM, respectively. SIRT4 was prepared in our laboratory as described for the GST fusion protein in this manuscript. The estimated final concentration of total SIRT4 was 11 nM. Each condition within an assay occasion was done in triplicate. The assay was performed in a black, 384-well, untreated plate (Nunc). After adding the acyl substrate to the plate, the plate was placed on ice while the enzyme was added. The reaction was started by the addition of NAD⁺ after which the plate was shaken for 30 s at room temp and then placed at 37°C with a plate lid. The total time from the NAD⁺ addition to the addition of the trypsin and nicotinamide was 60 min, and the plate was shaken again after approximately 30 min of incubation at 37°C. The final DMSO concentration was 1.7%. After addition of the trypsin and nicotinamide, the plate was shaken for 30 s and allowed to develop at room temp in the dark with a plate lid. A SpectraMax M2e plate reader with SoftMax Pro software (Molecular Devices) was used. Fluorescence (RFU) measurements were not converted to [AMC]. Where nicotinamide was included in the assay to test for inhibition of SIRT4, it was dissolved in assay buffer at 5X concentration prior to addition to the assay.

Comparison of Wild-type and FQ Mutant SIRT4 Activities

The assay for this comparison was done as described for the SIRT4 peptide substrate profiling above, except enzyme was used from the His-SUMO-SIRT4 purification as described in this manuscript. The final cleaved SIRT4 concentration was 0.28 μM and the substrate LGK-mg-AMC was used at 50 μM or 500 μM. During the 60 min assay at 37°C, the plate was covered with a lid and aluminum foil.

SIRT4-expressing and Empty Vector Stable Cell Lines

pBABE-derived plasmids with a mouse SIRT4 coding region insert or without insert (empty vector control) were used to generate retrovirus. HEK293T cells (provided by Eric Verdin, Gladstone Institute) transduced with SIRT4 or empty vector retrovirus were selected with puromycin to generate stable cell lines. The cells were maintained on DMEM with 10% fetal bovine serum.

Antibodies and Western Blotting

Commercial antibodies used were as follows: anti-MCCA from Santa Cruz (sc-271427), anti-UQCRFS1 from Abcam (ab14746), anti-SIRT4 from Sigma-Aldrich (HPA029691), anti-glutaryl-K from Cell Signaling (generous gift), anti-phospho-BCKDHe1α from Abcam (ab200577), anti-BCKDHe1α from Santa Cruz (sc67200), anti-citrate synthase from Origene (TA308365), and anti-total OXPHOS cocktail from Abcam (ab110413). The anti-3-methylglutaryl (MG) and hydroxymethylglutaryl (HMG) polyclonal antibodies were generated by YenZym Antibodies LLC (San Francisco, CA) using the ‘regular rabbit antibody service’. The immunogens used were MG-BSA and HMG-BSA that were made as follows: BSA (Sigma, fatty acid free, product number A7030) at 2 mg/mL in 0.1 M sodium bicarbonate, pH 8.0, was mixed with 3-methylglutaric or hydroxymethylglutaric anhydride (Sigma-Aldrich) at 10-fold molar excess over BSA lysine residues to form 3-methylglutaryl-BSA and hydroxymethylglutaric anhydride (Sigma-Aldrich) at 10-fold molar excess over BSA lysine residues to form 3-methylglutaryl-BSA and hydroxymethylglutaric anhydride, respectively. The reactions were incubated at room temperature for 30 min with continuous mixing and then passed over a Sephadex G-25 column (GE Healthcare #17-0851-01) to remove unreacted anhydride. The modified BSAs were then incubated with 1 M hydroxylamine, pH 7.0, for 1 hr at room temperature to reverse off-site modifications. Unreacted hydroxylamine was removed from the reactions by passage over Sephadex G-25 columns (GE Healthcare #17-0851-01) and BSA MG- and HMG-lysin modifications were verified by mass spectrometry analysis by the Duke Proteomics Core Facility.

For western blotting analysis using a LI-COR, whole-cell or crude mitochondrial protein extracts were resolved by SDS-PAGE and transferred to nitrocellulose membranes. The membranes were blocked in LI-COR buffer (0.6X PBS, 0.25% fish gelatin; Sigma-Aldrich #G7041, 0.05% casein; Sigma-Aldrich #C3400, and 0.02% azide) for 1 hr at room temperature and probed with primary antibody in LI-COR buffer/Tween (LI-COR containing 0.1% Tween 20). After incubation with infrared dye-conjugated secondary antibodies, the blots were developed using the LI-COR Odyssey Infrared Imaging System.

For western blotting analysis using ECL, 25 μg of protein was resolved by SDS-PAGE and transferred to Immobilon-P membranes (Thermo Fisher Scientific, #88520). The membranes were blocked in PBS block (PBS containing 5% milk) for 1 hr at room temperature and probed with primary antibodies in PBS-T (PBS block containing 0.1% Tween 20). After incubation with horseradish peroxidase (HRP)-conjugated secondary antibodies in PBS-T the blots were developed using SuperSignal West Pico Chemiluminescence substrate (Thermo Fisher Scientific, #34079) and visualized with the ChemiDoc XRS System (BioRad).

Isolation of Crude Mitochondria

Freshly harvested mouse liver was rinsed in ice-cold PBS, minced with scissors in STE buffer (0.25 M sucrose, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA, HALT protease inhibitor cocktail; Thermo Fisher Scientific, #78420B) 10-20 times, and homogenized in 10 volumes STE with 10-20 strokes in a chilled glass-tesfon homogenizer. The homogenate was centrifuged at 700 x g for 10 min at 4°C and the resulting supernatant centrifuged at 7,000 x g for 10 min at 4°C. The pellet of the 7,000 x g centrifugation is the mitochondrial pellet and was washed one time with STE buffer and frozen at −80°C.
Methylcrotonyl-CoA Carboxylase Activity Assay
Mitochondria were permeabilized by resuspending the never-frozen pellet in 0.2 mL of permeabilization buffer (105 mM K-MES, pH 7.1, 30 mM KCl, 10 mM KH2PO4, 5 mM MgCl2, 0.5 mg/mL BSA, and 30 μg/mL alamethicin; Sigma-Aldrich #AS361) and incubated for 5 min on ice. 10 μL of permeabilized mitochondria were pipetted into an Eppendorf tube and the MCCC assay began by adding 0.1 mL MCCC reaction mix (105 mM K-MES, pH 7.1, 30 mM KCl, 10 mM KH2PO4, 5 mM MgCl2, 0.5 mg/mL BSA, 2 mM ATP, 0.1 mM DTT, 0.3 mM methylcrotonyl-CoA; Sigma-Aldrich #M3013, and 1 mM NaH[14C]O3; Perkin Elmer #NEC086H). The reaction was incubated for 30 min at 37°C. The unreacted H[14C]O3 was then removed from the reaction by adding 0.05 mL 2 N HCl and placing the Eppendorf tube with lid open in a 60°C heat block in a radiation fume hood overnight. Under these conditions, unreacted H[14C]O3 is converted to CO2 gas that evaporates leaving the MGc-CoA product in the aqueous phase that dries to the bottom of the tube. The next morning, 0.5 mL of water was added to the dried sediment at the bottom of the tube and left for 3 hr at room temperature. The sediment was resuspended by pipetting up and down several times and all 0.5 mL were added to scintillation cocktail for DPM determination. Negative control reactions without permeabilized mitochondria or methylcrotonyl-CoA substrate were run in parallel. Negative control activity was subtracted from that of the test reaction to obtain MCCC activity.

Methylcrotonyl-CoA Carboxylase Immunoprecipitation
Fresh crude mitochondrial pellets were resuspended in Triton X-100 lysis buffer (50 mM Tris HCl, pH 8.0, 150 mM NaCl, 0.5% Triton X-100, 2 mM EDTA, 40 mM NaF, and HALT protease inhibitor cocktail; Thermo Fisher Scientific, #78420B) and homogenized in chilled racks with a TissueLyser bead mill (QIAGEN #85300) for 2 min at 30 Hz. After lysate centrifugation at 14,000 x g for 30 min to pellet insoluble material the supernatant protein concentration was determined by the BCA protein assay (Thermo Fisher Scientific, e13 Cell Metabolism 25, 838–855.e1–e15, April 4, 2017). About 1 mg protein in 1 mL Triton X-100 lysis buffer was incubated end-over-end overnight at 4°C. The beads and solution from the second elution were added to the spin column, which was centrifuged for 30 s at 1000 x g, and the flow-through saved. The agarose beads were subsequently eluted again by incubation with 150 μL of 8M-containing buffer (8 M urea in 50 mM Tris, pH 8.0, 40 mM NaCl, 2 mM MgCl2, + 1x Complete Roche protease inhibitor tablet, 10 mM Nicotinamide, 10 μM TSA) for 15 min at room temperature while rotating. The beads and solution from the second elution were added to the spin column, which was centrifuged for 30 s at 1000 x g, and the flow-through combined with that from the first elution. After the pH was verified to be ~7-8 with a pH strip, the sample was reduced with 5 mM DTT at 37°C for 30 min, cooled to RT, alkylated with 15 mM iodoacetamide for 30 min in the dark, and unretracted iodoacetamide quenched by the addition of DTT up to 15 mM for 10 min at room temperature. Following dilution to 1.5 M urea with 50 mM Tris (pH 8.0), 5 mM CaCl2, 5 μg of sequencing-grade trypsin (Promega) was added and digestion proceeded overnight at 37°C. The samples were acidified to 0.5% TFA and desalted on a Waters 50 mg tC18 SEP-PAK SPE column (Waters, #WAT054960) —eluting once with 500 μL 25% acetonitrile/0.1% TFA and twice with 500 μL 50% acetonitrile/0.1% TFA. The 1.5 mL eluate was frozen, lyophilized, and the dried peptides were re-suspended in 12 μL 0.1% formic acid, frozen, and submitted to the Duke University School of Medicine Proteomics Core facility for analysis by nLC-MS/MS described below.

Methylcrotonyl-CoA Carboxylase Analysis by Mass Spectrometry
Proteomic analysis was performed using a nano-Acquity UPLC system (Waters) coupled to a Q Exactive Plus Hybrid Quadrupole-Orbitrap mass spectrometer (Thermo Fisher Scientific) via a nanoelectrospray ionization source. For each injection, the sample was first trapped on a Symmetry C18 20 mm x 180 μm trapping column (5 μL/min at 99.9/0.1 v/v water/acetonitrile), after which the analytical separation was performed using a 1.7 μm Acquity BEH130 C18 75 μm x 250 mm column (Waters Corp.) over a gradient of 3 to 30% acetonitrile (total run time 235 min) in 0.1% formic acid at a flow rate of 400 nanoliters/minute (nL/min) with a column temperature of 55°C. The mass spectrometer was operated in data-dependent acquisition (DDA) collecting MS/MS spectra for the top 10 ions with a charge greater than 1. MS1 (precursor) analysis was performed at 70,000 resolution, with an AGC target of 1x10^6 ions and a maximum injection time of 60 ms. Tandem mass spectra (MS/MS) were collected in a data-dependent manner on the top 10 most abundant precursor ions per MS1 scan, with dynamic exclusion enabled for a window of 20 s. Precursor ions were filtered with a 2.0 m/z isolation window and fragmented with a normalized collision energy of 27. MS2 scans were performed at 17,500 resolution, with an AGC target of 5 x 10^4 ions and a maximum injection time of 60 ms.

LC-MS/MS Data Processing
Raw LC-MS/MS data were processed in Proteome Discoverer v2.1, service pack 1 (PD2.1 SP1, Thermo Fisher Scientific), using the Byonic search engine as a node (Protein Metrics, Inc.). Data were searched against the UniProt mouse complete proteome database of reviewed (Swiss-Prot) and unreviewed (TrEMBL) proteins, which consisted of 51,414 sequences on the date of download (6/23/2016). Seven (all set as “common”) variable modifications included oxidation (M), and acylation of lysine with the following mono-isotopic additions to K in parentheses: hydroxymethylglutaryl- (HMG, 144.042587348 Da), 3-methylglutaconyl (MGc,
126.0316941 Da), methylglutaryl (MG, 128.047344 Da), glutaryl (114.0316941 Da), acetyl (42.010565 Da), and succinyl (100.016044 Da). Fixed modification of carbamidomethyl (C) was selected. Data were searched with a 10 ppm precursor mass and 20 ppm product ion tolerance. The maximum number of missed cleavages was set at 4 and enzyme specificity was trypsin. Peptide spectral matches (PSMs) were filtered to a 1% false discovery rate (FDR) in PDv2.1 based on the target-decoy search results from Byonic. Site localization probabilities were determined using the ptmRS node of PDv2.1. PSMs were grouped to peptides maintaining 1% matches (PSMs) were filtered to a 1% false discovery rate (FDR) in PDv2.1 based on the target-decoy search results from Byonic.

Methylcrotonyl-CoA Carboxylase Modeling

All computational modeling was performed using Accelrys Discovery Studio 4.5 (Biovia, Inc., San Diego, CA). The crystal structure coordinates for the *P. aeruginosa* MCCC complex (Huang et al., 2011) was downloaded from the Protein Data Bank (http://www wwpdb.org; PDB: 3U9S). Using this structure as a template, mouse homology models of the alpha (48% identity, 63% similarity) and beta (66% identity, 83% similarity) subunits were generated using the MODELER protocol (Eswar et al., 2008). Each mouse subunit was superimposed over the corresponding subunits in the crystal structure template by sequence alignment and the resulting complex typed with the CHARMM forcefield (Brooks et al., 2009) and energy minimized with the smart minimizer protocol using the Generalized-Born with simple switching implicit solvent model (Feig et al., 2004) to an RMS convergence < 0.01 kcal/mol. Figures were rendered using Lightwave 2015.3 (Lightwave3D Group, Burbank, CA).

Native Protein-Complex Preparation

Crude mitochondrial pellets were isolated from freshly harvested mouse liver as described above, flash frozen, and stored at –80°C. Mitochondrial extracts containing non-denatured native protein complexes were prepared using NativePAGE Sample Prep Kit (Invitrogen, #BN2008). Crude mitochondrial pellets were thawed on ice before extraction. Proteins were solubilized in 1X NativePAGE sample buffer containing 5% DDM (n-dodecyl-b-D-maltoside), at a protein concentration of 10-50 mg/mL, by pipetting up and down and by inversion. After 15 min on ice the lysates were centrifuged for 30 min at 14,000 x g and the supernatants stored at –80°C.

Blue Native Polyacrylamide Gel Electrophoresis

Mitochondrial native protein extracts (25 µg protein per lane) were resolved by PAGE using the Native PAGE Novex Bis-Tris Gel System (Invitrogen, #BN2008). Immediately before PAGE Coomassie G-250 additive was added to the mitochondrial extracts at a final concentration of 1.25%. 4%–16% Polyacrylamide gradient gels (Invitrogen, #BN2111) were run at 200V for 3h. Protein from the gels was transferred to PVDF membranes for immunoblotting following the standard ECL western blotting protocol.

Detection of Biotinylated Methylcrotonyl-CoA Carboxylase subunit A

Protein extracts or immunoprecipitates containing MCCA were resolved by PAGE and transferred to nitrocellulose membranes. The membranes were incubated with streptavidin-AlexaFluor 680 (Thermo Fisher Scientific, #S32358) at a dilution of 1/2000 in LI-COR buffer/Tween for 1 hr, washed, and the signal imaged and quantified using the LI-COR Odyssey Infrared Imaging System.

Mitochondrial Substrate Oxidation Assays

Mitochondria were isolated from liver, heart and/or skeletal muscle of SIRT4KO or WT mice, as previously described (Frezza et al., 2007). Briefly, mitochondria were isolated from liver, heart and/or skeletal muscle of SIRT4KO or WT mice via differential centrifugation. Tissues were minced in ice-cold mitochondrial isolation buffer (KCl 100mM, MOPS 50mM, EGTA 1mM, MgSO₄ 5mM, pH = 7.1) and washed once with the same buffer. Skeletal muscle and heart tissues were pre-treated with bacterial proteinase (0.5mg/mL; Sigma: P8038) for 2 min on ice prior to homogenization. Tissues were homogenized in mitochondrial isolation buffer, supplemented with 0.2% BSA using glass/teflon Potter Elvehjem homogenizers. Homogenate was centrifuged at 500 x G for 10 min at 4°C. The supernatant was then centrifuged at 9,000 x G for 10 min at 4°C. Mitochondrial pellets were washed once in mitochondrial isolation buffer without BSA and again pelleted at 9,000 x G for 10 min at 4°C. Final pellets were resuspended in mitochondrial isolation buffer without BSA and protein content was determined using the Pierce BCA protein assay.

All substrate oxidation assays were performed in a 96-well plate using a potassium-based respiration buffer (105 mM K-MES, 30 mM KCl, 10 mM KH₂PO₄, 5 mM MgCl₂, 0.5 mg/mL BSA, pH 7.1), supplemented with thiamine pyrophosphate (0.3 mM), coenzyme A (0.1 mM), rotenone (0.005 mM), oxidized nicotinamide adenine dinucleotide (2 mM) and alamethicin (0.03 mg/mL). Mitochondria were added to the assay buffer at a concentration of 0.15 mg/mL and the suspension was incubated at room temperature for 5 min to allow adequate permeabilization of the inner mitochondrial membrane by alamethicin (Gostimskaya et al., 2003). Substrates and/or drugs were added directly to their respective wells during this incubation period at the following concentrations: 5 mM pyruvate, 10 mM 2-ketoglutarate, 10 mM glutamate, 1 mM ketosocaproyc, 1 mM ketoservalerate, 1 mM ketomethylvalerate, 0.2 mM isovaleryl-CoA, 0.1 mM BT2. To initiate the assay, 200 µL of assay suspension was added to each well and NADH fluorescence (excitation/emission, 340/460) was monitored for 10 min using a temperature-controlled spectrofluorometer. All assays were performed at 37°C. The linear portions of each trace were used to calculate rates of NADH production and data were presented as a percentage of the WT slope.

High-resolution O₂ consumption measurements were conducted at 37°C in potassium-based respiration buffer (K-MES 105mM, KCl 30mM, KH₂PO₄ 10mM, MgCl₂ 5mM, BSA 0.5mg/mL, pH = 7.1), using the OROBOROS O₂K Oxygraph. For experiments involving heart mitochondria, respiration buffer was supplemented with creatine monohydrate (25mM). Hexokinase (1U/mL) and glucose...
(5mM) were included in all assays in an effort to clamp extramitochondrial ADP at 1mM (Clark et al., 1997). To begin, mitochondria (0.025mg/mL heart, 0.1mg/mL liver) were added to the respiration chamber in the absence of energizing substrates. The following substrates were then added sequentially: octanoyl-carnitine/malate (Oct/M; 0.2/2mM), ADP (D; 1mM), glutamate (G; 10mM) and succinate (S; 10mM). Cytochrome C (0.01mM) was added last to assess the intactness of the inner mitochondrial membrane.

Islet Perfusion

Mouse islet isolations and perifusions were performed as described (Campbell et al., 2016). The pancreas was inflated via the pancreatic duct with collagenase type V (0.8 mg per mL from Sigma-Aldrich, #C9263), excised, and digested for 10-15 min at 37°C. The digest was washed with cold RPMI (containing 2 mM L-glutamine, 10 mM glucose, 0.25% BSA, 100 U/mL penicillin, and 100 µg/mL streptomycin), and the then islets were separated using a Histopaque gradient (Sigma-Aldrich, #10771 and #11191). Individual islets were handpicked and then cultured in RPMI 1640 with 10% FBS and penicillin/streptomycin overnight. Prior to perfusion, islets were equilibrated for one hour with Krebs-Ringer buffer containing 2.7 mM glucose. Islets were washed with Krebs-Ringer buffer containing 2.7 mM glucose in between nutrient stimulations. Stimulatory glucose was from Thermo Fisher Scientific (#25030081) and L-leucine was from Sigma-Aldrich (#61819). Perifusate was collected in 1 min intervals and assayed for insulin by radioimmunoassay (Millipore, RI-13K).

Mouse Physiology

Fasting insulin and glucose measurements were made after a 5-6 hr fast beginning at 8:30 am. Nutrient-stimulated insulin secretion was measured by fasting the mice for 5-6 hr and then orally gavaging them with 1.5 mg/g glucose or 0.3 mg/g L-leucine. Blood samples were subsequently collected via saphenous vein using heparinzed capillary tubes and centrifuged at 4600 RCF for 9 min at 4°C to obtain plasma. Plasma was assayed for insulin using the Stellux Rodent Insulin ELISA (Alpco, #80-INSMR-CH01). Insulin tolerance tests were performed by intraperitoneally injecting the mice with 1.0-1.4 U/kg insulin (Lilly, Humulin R U-100) following a 5-6 hr fast and then blood glucose levels were measured using a NovaMax glucometer (Nova Biomedical).

Plasma Leucine and α-Ketoisocaproate Measurements

50 µL of plasma containing internal standards L-leucine-d3 (CDN Isotopes, D-1973) and L-isoleucine-13C6 (Cambridge Isotope Laboratories, CLM-2248-H-PK) was precipitated with methanol, the supernatants were dried down under N2, and reconstituted in 0.1% formic acid in water. Leu and Ile were analyzed on a Waters Xevo TQ-S triple quadrupole mass spectrometer coupled to a Waters Acquity UPLC system. The analytical column (Waters Acquity UPLC HSS T3 Column, 1.8 µm, 2.1 x 100 mm) was used at 30°C, 10 µL of the sample was injected onto the column, and eluted at a flow rate of 0.3 mL/min. The gradient began with 100% eluent A (0.1% formic acid in water) and was then programmed as follows: 0 to 2 min - 0% eluent B (95:5 acetonitrile-water, 0.1% formic acid); 2 to 10 min - gradient to 40% eluent B; 10 to 11 min - gradient to 100% eluent B; 11 to 13 min hold at 100% eluent B; 13:0 to 13.5 min gradient to 0% eluent B; 13.5 to 15.5 min hold at 100% eluent A to re-equilibrate the column. Mass transitions of m/z 132.1/C2/H, 89.2 for L-leucine-d3, and 138.1 → 91.2 for L-isoleucine-13C6 were monitored in a positive ion electrospray ionization mode with the following parameters: capillary voltage 2,000 V, cone voltage 14 V, and collision energy 15 V. Separate quantitation of Leu and Ile from raw multiple reaction monitoring data was performed using Waters TargetLynx Quantitative Analysis.

Plasma αKIC was measured as previously described. 30 µL of plasma containing internal standard KIC-d3 (Cambridge Isotope Laboratories, DLM-1944) was precipitated with 150 µL of 3M PCA. 200 µl of 25 M o-phenylenediamine (OPD) in 3M HCl was added to the supernatants and the samples were incubates at 80°C for 20 min. KIC was extracted with ethyl acetate as previously described. The extracts were dried under nitrogen, reconstituted in 200 mM ammonium acetate and analyzed on a Waters Xevo TQ-S triple quadrupole mass spectrometer coupled to a Waters Acquity UPLC system. The analytical column (Waters Acquity UPLC BEH C18 Column, 1.7 µm, 2.1 x 50 mm) was used at 30°C, 10 µL of the sample was injected onto the column, and eluted at a flow rate of 0.4 mL/min. The gradient began with 45% eluent A (5 mM ammonium acetate in water) and was then programmed as follows: 0 to 2 min - 55% eluent B (methanol); 2 to 2.5 min - gradient to 95% eluent B; 2.5 to 3.2 min - hold at 95% eluent B, return to 45% A and re-equilibrate the column for 1 min. Mass transitions of m/z 203 → 161 for KIC and 206 → 161 for KIC-d3 were monitored in a positive ion electrospray ionization mode.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical tests, exact values of n, what n represents, definitions of center, dispersion, and precision, and definitions of significance are indicated in the figure legends. Boxplots depict the interquartile range with whiskers plotted to the min and max values. The horizontal line within the box is the median value and the “+” is the mean value. Statistical tests were performed using GraphPad Prism. Z-scores were calculated using the equation $Z = (n - \text{mean})/\text{standard deviation}$. Heatmaps were generated using Plotly (https://www.plot.ly).

DATA AND SOFTWARE AVAILABILITY

Proteomic datasets used to define the SIRT4 interactome (Table S2) and identify methylcrotonyl-CoA carboxylase acylation sites (Table S3) are available as supplemental files. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE (Vizcaíno et al., 2016) partner repository with the dataset identifier PRIDE: PXD005896.